Skip to main content
Log in

Glutamine metabolism in Th17/Treg cell fate: applications in Th17 cell-associated diseases

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Alteration in the Th17/Treg cell balance is implicated in various autoimmune diseases and these disease-associated pathologies. Increasing investigations have shown that glutamine metabolism regulates the differentiation of Th17 and Treg cells. Here we summarize the mechanisms by which glutamine metabolism regulates Th17/Treg cell fate. Some examples of a glutamine metabolism-dependent modulation of the development and progression of several Th17 Treg cell-associated diseases are provided afterward. This review will provide a comprehensive understanding of the importance of glutamine metabolism in the fate of Th17 Treg cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberghina, L., and Gaglio, D. (2014). Redox control of glutamine utilization in cancer. Cell Death Dis 5, e1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida, L., Lochner, M., Berod, L., and Sparwasser, T. (2016). Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol 28, 514–524.

    Article  CAS  PubMed  Google Scholar 

  • Altman, B.J., Stine, Z.E., and Dang, C.V. (2016). From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16, 749.

    Article  CAS  PubMed  Google Scholar 

  • Angelin, A., Gil-de-Gómez, L., Dahiya, S., Jiao, J., Guo, L., Levine, M.H., Wang, Z., Quinn III, W.J., Kopinski, P.K., Wang, L., et al. (2017). Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab 25, 1282–1293.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo, L., Khim, P., Mkhikian, H., Mortales, C.L., and Demetriou, M. (2017). Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife 6, e21330.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arellano, B., Graber, D.J., and Sentman, C.L. (2016). Regulatory T cell-based therapies for autoimmunity. Discov Med 22, 73–80.

    PubMed  PubMed Central  Google Scholar 

  • Ben-Sahra, I., Howell, J.J., Asara, J.M., and Manning, B.D. (2013). Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339, 1323–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beringer, A., Noack, M., and Miossec, P. (2016). IL-17 in chronic inflammation: from discovery to targeting. Trends Mol Med 22, 230–241.

    Article  CAS  PubMed  Google Scholar 

  • Berod, L., Friedrich, C., Nandan, A., Freitag, J., Hagemann, S., Harmrolfs, K., Sandouk, A., Hesse, C., Castro, C.N., Bähre, H., et al. (2014). De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20, 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  • Bhutia, Y.D., Babu, E., Ramachandran, S., and Ganapathy, V. (2015). Amino acid transporters in cancer and their relevance to “glutamine addiction”: novel targets for the design of a new class of anticancer drugs. Cancer Res 75, 1782–1788.

    Article  CAS  PubMed  Google Scholar 

  • Birsoy, K., Wang, T., Chen, W.W., Freinkman, E., Abu-Remaileh, M., and Sabatini, D.M. (2015). An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bröer, A., Rahimi, F., and Bröer, S. (2016). Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells. J Biol Chem 291, 13194–13205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bunse, L., Pusch, S., Bunse, T., Sahm, F., Sanghvi, K., Friedrich, M., Alansary, D., Sonner, J.K., Green, E., Deumelandt, K., et al. (2018). Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 24, 1192–1203.

    Article  CAS  PubMed  Google Scholar 

  • Carr, E.L., Kelman, A., Wu, G.S., Gopaul, R., Senkevitch, E., Aghvanyan, A., Turay, A.M., and Frauwirth, K.A. (2010). Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 185, 1037–1044.

    Article  CAS  PubMed  Google Scholar 

  • Chantranupong, L., Scaria, S.M., Saxton, R.A., Gygi, M.P., Shen, K., Wyant, G.A., Wang, T., Harper, J.W., Gygi, S.P., and Sabatini, D.M. (2016). The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W.J., Jin, W., Hardegen, N., Lei, K.J., Li, L., Marinos, N., McGrady, G., and Wahl, S.M. (2003). Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med 198, 1875–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong, H., Lindsten, T., Wu, J., Lu, C., and Thompson, C.B. (2011). Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci USA 108, 11121–11126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiaradonna, F., Ricciardiello, F., and Palorini, R. (2018). The nutrient-sensing hexosamine biosynthetic pathway as the hub of cancer metabolic rewiring. Cells 7, 53.

    Article  PubMed Central  CAS  Google Scholar 

  • Cooper, A.J.L., and Kuhara, T. (2014). α-Ketoglutaramate: an overlooked metabolite of glutamine and a biomarker for hepatic encephalopathy and inborn errors of the urea cycle. Metab Brain Dis 29, 991–1006.

    Article  CAS  PubMed  Google Scholar 

  • Dang, L., and Su, S.S.M. (2017). Isocitrate dehydrogenase mutation and (R)-2-hydroxyglutarate: from basic discovery to therapeutics development. Annu Rev Biochem 86, 305–331.

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis, R.J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., and Thompson, C.B. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104, 19345–19350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgoffe, G.M., Kole, T.P., Zheng, Y., Zarek, P.E., Matthews, K.L., Xiao, B., Worley, P.F., Kozma, S.C., and Powell, J.D. (2009). The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, G., Song, X., Fujimoto, S., Piccirillo, C.A., Nagai, Y., and Greene, M.I. (2019). Foxp3 post-translational modifications and Treg suppressive activity. Front Immunol 10, 2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewaele, M., Maes, H., and Agostinis, P. (2010). ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6, 838–854.

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Villar, M., and Hafler, D.A. (2018). Regulatory T cells in autoimmune disease. Nat Immunol 19, 665–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly, N., Gorman, A.M., Gupta, S., and Samali, A. (2013). The eIF2α kinases: their structures and functions. Cell Mol Life Sci 70, 3493–3511.

    Article  CAS  PubMed  Google Scholar 

  • Dröge, W., Eck, H.P., Gmünder, H., and Mihm, S. (1991). Modulation of lymphocyte functions and immune responses by cysteine and cysteine derivatives. Am J Med 91, S140–S144.

    Article  Google Scholar 

  • Dunlop, E.A., and Tee, A.R. (2014). mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin Cell Dev Biol 36, 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Durán, R.V., Oppliger, W., Robitaille, A.M., Heiserich, L., Skendaj, R., Gottlieb, E., and Hall, M.N. (2012). Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 47, 349–358.

    Article  PubMed  CAS  Google Scholar 

  • Eng, C.H., Yu, K., Lucas, J., White, E., and Abraham, R.T. (2010). Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal 3, ra31.

    PubMed  Google Scholar 

  • Essig, K., Hu, D., Guimaraes, J.C., Alterauge, D., Edelmann, S., Raj, T., Kranich, J., Behrens, G., Heiseke, A., Floess, S., et al. (2017). Roquin suppresses the PI3K-mTOR signaling pathway to inhibit T helper cell differentiation and conversion of Treg to Tfr cells. Immunity 47, 1067–1082.e12.

    Article  CAS  PubMed  Google Scholar 

  • Floss, D.M., Schröder, J., Franke, M., and Scheller, J. (2015). Insights into IL-23 biology: From structure to function. Cytokine Growth Factor Rev 26, 569–578.

    Article  CAS  PubMed  Google Scholar 

  • Franklin, C.C., Backos, D.S., Mohar, I., White, C.C., Forman, H.J., and Kavanagh, T.J. (2009). Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med 30, 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Gameiro, P.A., Yang, J., Metelo, A.M., Pérez-Carro, R., Baker, R., Wang, Z., Arreola, A., Rathmell, W.K., Olumi, A., López-Larrubia, P., et al. (2013). In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab 17, 372–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerriets, V.A., Kishton, R.J., Nichols, A.G., Macintyre, A.N., Inoue, M., Ilkayeva, O., Winter, P.S., Liu, X., Priyadharshini, B., Slawinska, M.E., et al. (2015). Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest 125, 194–207.

    Article  PubMed  Google Scholar 

  • Hägglund, M.G.A., Hellsten, S.V., Bagchi, S., Philippot, G., Löfqvist, E., Nilsson, V.C.O., Almkvist, I., Karlsson, E., Sreedharan, S., Tafreshiha, A., et al. (2015). Transport of L-glutamine, L-alanine, L-arginine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS. J Mol Biol 427, 1495–1512.

    Article  PubMed  CAS  Google Scholar 

  • Han, A.P., Yu, C., Lu, L., Fujiwara, Y., Browne, C., Chin, G., Fleming, M., Leboulch, P., Orkin, S.H., and Chen, J.J. (2001). Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J 20, 6909–6918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11, 619–633.

    Article  CAS  PubMed  Google Scholar 

  • Hensley, C.T., Wasti, A.T., and DeBerardinis, R.J. (2013). Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 123, 3678–3684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  • Hosios, A.M., Hecht, V.C., Danai, L.V., Johnson, M.O., Rathmell, J.C., Steinhauser, M.L., Manalis, S.R., and Vander Heiden, M.G. (2016). Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell 36, 540–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov, I.I., Zhou, L., and Littman, D.R. (2007). Transcriptional regulation of Th17 cell differentiation. Semin Immunol 19, 409–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izquierdo-Garcia, J.L., Viswanath, P., Eriksson, P., Cai, L., Radoul, M., Chaumeil, M.M., Blough, M., Luchman, H.A., Weiss, S., Cairncross, J. G., et al. (2015). IDH1 mutation induces reprogramming of pyruvate metabolism. Cancer Res 75, 2999–3009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jewell, J.L., Kim, Y.C., Russell, R.C., Yu, F.X., Park, H.W., Plouffe, S.W., Tagliabracci, V.S., and Guan, K.L. (2015). Differential regulation of mTORC1 by leucine and glutamine. Science 347, 194–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, M.O., Wolf, M.M., Madden, M.Z., Andrejeva, G., Sugiura, A., Contreras, D.C., Maseda, D., Liberti, M.V., Paz, K., Kishton, R.J., et al. (2018). Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175, 1780–1795.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, J., Genau, H.M., and Behrends, C. (2015). Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9. Mol Cell Biol 35, 2479–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, J., Zeng, H., and Horng, T. (2019). Metabolism as a guiding force for immunity. Nat Cell Biol 21, 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Kandasamy, P., Gyimesi, G., Kanai, Y., and Hediger, M.A. (2018). Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 43, 752–789.

    Article  CAS  PubMed  Google Scholar 

  • Kasper, I.R., Apostolidis, S.A., Sharabi, A., and Tsokos, G.C. (2016). Empowering regulatory T cells in autoimmunity. Trends Mol Med 22, 784–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., and Guan, K.L. (2019). mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21, 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.G., Hoffman, G.R., Poulogiannis, G., Buel, G.R., Jang, Y.J., Lee, K. W., Kim, B.Y., Erikson, R.L., Cantley, L.C., Choo, A.Y., et al. (2013). Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49, 172–185.

    Article  CAS  PubMed  Google Scholar 

  • Klysz, D., Tai, X., Robert, P.A., Craveiro, M., Cretenet, G., Oburoglu, L., Mongellaz, C., Floess, S., Fritz, V., Matias, M.I., et al. (2015). Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal 8, ra97.

    Article  PubMed  CAS  Google Scholar 

  • Kono, M., Yoshida, N., Maeda, K., and Tsokos, G.C. (2018). Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells. Proc Natl Acad Sci USA 115, 2478–2483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane, A.N., and Fan, T.W.M. (2015). Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43, 2466–2485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, G.R. (2018). The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci 19, 730.

    Article  PubMed Central  CAS  Google Scholar 

  • Levine, B., Mizushima, N., and Virgin, H.W. (2011). Autophagy in immunity and inflammation. Nature 469, 323–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian, G., Gnanaprakasam, J.R., Wang, T., Wu, R., Chen, X., Liu, L., Shen, Y., Yang, M., Yang, J., Chen, Y., et al. (2018). Glutathione de novo synthesis but not recycling process coordinates with glutamine cata-bolism to control redox homeostasis and directs murine T cell differentiation. eLife 7, e36185.

    Article  Google Scholar 

  • Lin, H., Song, P., Zhao, Y., Xue, L.J., Liu, Y., and Chu, C.Q. (2015). Targeting Th17 cells with small molecules and small interference RNA. Mediat Inflamm 2015, 1–11.

    Google Scholar 

  • Liu, B., Salgado, O.C., Singh, S., Hippen, K.L., Maynard, J.C., Burlingame, A.L., Ball, L.E., Blazar, B.R., Farrar, M.A., Hogquist, K. A., et al. (2019). The lineage stability and suppressive program of regulatory T cells require protein O-GlcNAcylation. Nat Commun 10, 354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Le, A., Hancock, C., Lane, A.N., Dang, C.V., Fan, T.W.M., and Phang, J.M. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA 109, 8983–8988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lochner, M., Berod, L., and Sparwasser, T. (2015). Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36, 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Losman, J.A., Looper, R.E., Koivunen, P., Lee, S., Schneider, R.K., McMahon, C., Cowley, G.S., Root, D.E., Ebert, B.L., and Kaelin, W.G. (2013). (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625.

    Article  CAS  PubMed  Google Scholar 

  • Lu, S.C. (2009). Regulation of glutathione synthesis. Mol Aspects Med 30, 42–59.

    Article  CAS  PubMed  Google Scholar 

  • Lv, D., Xiong, X., Yang, H., Wang, M., He, Y., Liu, Y., and Yin, Y. (2018). Effect of dietary soy oil, glucose, and glutamine on growth performance, amino acid profile, blood profile, immunity, and antioxidant capacity in weaned piglets. Sci China Life Sci 61, 1233–1242.

    Article  CAS  PubMed  Google Scholar 

  • Ma, E.H., Bantug, G., Griss, T., Condotta, S., Johnson, R.M., Samborska, B., Mainolfi, N., Suri, V., Guak, H., Balmer, M.L., et al. (2017). Serine is an essential metabolite for effector T cell expansion. Cell Metab 25, 345–357.

    Article  CAS  PubMed  Google Scholar 

  • McGeachy, M.J., and Cua, D.J. (2008). Th17 cell differentiation: the long and winding road. Immunity 28, 445–453.

    Article  CAS  PubMed  Google Scholar 

  • Meier, C., Ristic, Z., Klauser, S., and Verrey, F. (2002). Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 21, 580–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metallo, C.M., Gameiro, P.A., Bell, E.L., Mattaini, K.R., Yang, J., Hiller, K., Jewell, C.M., Johnson, Z.R., Irvine, D.J., Guarente, L., et al. (2011). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miossec, P., and Kolls, J.K. (2012). Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov 11, 763–776.

    Article  CAS  PubMed  Google Scholar 

  • Miyara, M., and Sakaguchi, S. (2007). Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 13, 108–116.

    Article  CAS  PubMed  Google Scholar 

  • Mkhikian, H., Mortales, C.L., Zhou, R.W., Khachikyan, K., Wu, G., Haslam, S.M., Kavarian, P., Dell, A., and Demetriou, M. (2016). Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis. eLife 5, e14814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan, B., Sobotta, M.C., and Dick, T.P. (2011). Measuring EGSH and H2O2 with roGFP2-based redox probes. Free Rad Biol Med 51, 1943–1951.

    Article  CAS  PubMed  Google Scholar 

  • Mougiakakos, D., Johansson, C.C., and Kiessling, R. (2009). Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood 113, 3542–3545.

    Article  CAS  PubMed  Google Scholar 

  • Mullen, A.R., Wheaton, W.W., Jin, E.S., Chen, P.H., Sullivan, L.B., Cheng, T., Yang, Y., Linehan, W.M., Chandel, N.S., and DeBerardinis, R.J. (2011). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakaya, M., Xiao, Y., Zhou, X., Chang, J.H., Chang, M., Cheng, X., Blonska, M., Lin, X., and Sun, S.C. (2014). Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicklin, P., Bergman, P., Zhang, B., Triantafellow, E., Wang, H., Nyfeler, B., Yang, H., Hild, M., Kung, C., Wilson, C., et al. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill, L.A.J., Kishton, R.J., and Rathmell, J. (2016). A guide to immunometabolism for immunologists. Nat Rev Immunol 16, 553–565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, J.O., Rubin, S.A., Xu, Y.F., Amador-Noguez, D., Fan, J., Shlomi, T., and Rabinowitz, J.D. (2016). Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat Chem Biol 12, 482–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, D., Menon, D., Bernfeld, E., Mroz, V., Kalan, S., Loayza, D., and Foster, D.A. (2016). Aspartate rescues S-phase arrest caused by suppression of glutamine utilization in KRas-driven cancer cells. J Biol Chem 291, 9322–9329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrus, P., Lecoutre, S., Dollet, L., Wiel, C., Sulen, A., Gao, H., Tavira, B., Laurencikiene, J., Rooyackers, O., Checa, A., et al. (2020). Glutamine links obesity to inflammation in human white adipose tissue. Cell Metab 31, 375–390.e11.

    Article  CAS  PubMed  Google Scholar 

  • Phang, J.M., Liu, W., Hancock, C.N., and Fischer, J.W. (2015). Proline metabolism and cancer. Curr Opin Clin Nutr Metab Care 18, 71–77.

    Article  CAS  PubMed  Google Scholar 

  • Pulendran, B. (2015). The varieties of immunological experience: of pathogens, stress, and dendritic cells. Annu Rev Immunol 33, 563–606.

    Article  CAS  PubMed  Google Scholar 

  • Qing, G., Li, B., Vu, A., Skuli, N., Walton, Z.E., Liu, X., Mayes, P.A., Wise, D.R., Thompson, C.B., Maris, J.M., et al. (2012). ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22, 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raphael, I., Nalawade, S., Eagar, T.N., and Forsthuber, T.G. (2015). T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74, 5–17.

    Article  CAS  PubMed  Google Scholar 

  • Ravindran, R., Loebbermann, J., Nakaya, H.I., Khan, N., Ma, H., Gama, L., Machiah, D.K., Lawson, B., Hakimpour, P., Wang, Y.C., et al. (2016). The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature 531, 523–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebsamen, M., Pochini, L., Stasyk, T., de Araújo, M.E.G., Galluccio, M., Kandasamy, R.K., Snijder, B., Fauster, A., Rudashevskaya, E.L., Bruckner, M., et al. (2015). SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed, M., Morris, S.H., Owczarczyk, A.B., and Lukacs, N.W. (2015). Deficiency of autophagy protein Map1-LC3b mediates IL-17-dependent lung pathology during respiratory viral infection via ER stress-associated IL-1. Mucosal Immunol 8, 1118–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid, M.A., Dai, Z., and Locasale, J.W. (2017). The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19, 1298–1306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, W., Chen, S., Zhang, L., Liu, G., Hussain, T., Hao, X., Yin, J., Duan, J., Tan, B., Wu, G., et al. (2016a). Interferon Tau affects mouse intestinal microbiota and expression of IL-17. Mediat Inflamm 2016, 1–9.

    Google Scholar 

  • Ren, W., Liao, Y., Ding, X., Jiang, Y., Yan, J., Xia, Y., Tan, B., Lin, Z., Duan, J., Jia, X., et al. (2019a). Slc6a13 deficiency promotes Th17 responses during intestinal bacterial infection. Mucosal Immunol 12, 531–544.

    Article  CAS  PubMed  Google Scholar 

  • Ren, W., Liu, G., Chen, S., Yin, J., Wang, J., Tan, B., Wu, G., Bazer, F.W., Peng, Y., Li, T., et al. (2017a). Melatonin signaling in T cells: Functions and applications. J Pineal Res 62, e12394.

    Article  CAS  Google Scholar 

  • Ren, W., Liu, G., Yin, J., Tan, B., Wu, G., Bazer, F.W., Peng, Y., and Yin, Y. (2017b). Amino-acid transporters in T-cell activation and differentiation. Cell Death Dis 8, e2655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, W., Xia, Y., Chen, S., Wu, G., Bazer, F.W., Zhou, B., Tan, B., Zhu, G., Deng, J., and Yin, Y. (2019b). Glutamine metabolism in macrophages: a novel target for obesity/type 2 diabetes. Adv Nutr 10, 321–330.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren, W., Yin, J., Duan, J., Liu, G., Tan, B., Yang, G., Wu, G., Bazer, F.W., Peng, Y., and Yin, Y. (2016b). mTORC1 signaling and IL-17 expression: Defining pathways and possible therapeutic targets. Eur J Immunol 46, 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Ren, W., Yin, J., Xiao, H., Chen, S., Liu, G., Tan, B., Li, N., Peng, Y., Li, T., Zeng, B., et al. (2017c). Intestinal microbiota-derived GABA mediates interleukin-17 expression during enterotoxigenic Escherichia coli infection. Front Immunol 7, 685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robitaille, A.M., Christen, S., Shimobayashi, M., Cornu, M., Fava, L.L., Moes, S., Prescianotto-Baschong, C., Sauer, U., Jenoe, P., and Hall, M. N. (2013). Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339, 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  • Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and Sabatini, D.M. (2008). The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sener, Z., Cederkvist, F.H., Volchenkov, R., Holen, H.L., and Skålhegg, B. S. (2016). T helper cell activation and expansion is sensitive to glutaminase inhibition under both hypoxic and normoxic conditions. PLoS ONE 11, e0160291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shabgah, A.G., Fattahi, E., and Shahneh, F.Z. (2014). Interleukin-17 in human inflammatory diseases. Postepy Dermatol Alergol 4, 256–261.

    Article  Google Scholar 

  • Sharabi, A., Tsokos, M.G., Ding, Y., Malek, T.R., Klatzmann, D., and Tsokos, G.C. (2018). Regulatory T cells in the treatment of disease. Nat Rev Drug Discov 17, 823–844.

    Article  CAS  PubMed  Google Scholar 

  • Son, J., Lyssiotis, C.A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R. M., Ferrone, C.R., Mullarky, E., Shyh-Chang, N., et al. (2013). Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sood, R., Porter, A.C., Olsen, D.A., Cavener, D.R., and Wek, R.C. (2000). A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha. Genetics 154, 787–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spence, A., Klementowicz, J.E., Bluestone, J.A., and Tang, Q. (2015). Targeting Treg signaling for the treatment of autoimmune diseases. Curr Opin Immunol 37, 11–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan, L.B., Gui, D.Y., Hosios, A.M., Bush, L.N., Freinkman, E., and Vander Heiden, M.G. (2015). Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162, 552–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, S., Saegusa, J., Sendo, S., Okano, T., Akashi, K., Irino, Y., and Morinobu, A. (2017). Glutaminase 1 plays a key role in the cell growth of fibroblast-like synoviocytes in rheumatoid arthritis. Arthr Res Ther 19, 76.

    Article  CAS  Google Scholar 

  • Timmerman, L.A., Holton, T., Yuneva, M., Louie, R.J., Padró, M., Daemen, A., Hu, M., Chan, D.A., Ethier, S.P., van’ t Veer, L.J., et al. (2013). Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24, 450–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno, A., Jeffery, L., Kobayashi, T., Hibi, T., Ghosh, S., and Jijon, H. (2018). Th17 plasticity and its relevance to inflammatory bowel disease. J Autoimmun 87, 38–49.

    Article  CAS  PubMed  Google Scholar 

  • van Geldermalsen, M., Wang, Q., Nagarajah, R., Marshall, A.D., Thoeng, A., Gao, D., Ritchie, W., Feng, Y., Bailey, C.G., Deng, N., et al. (2016). ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35, 3201–3208.

    Article  CAS  PubMed  Google Scholar 

  • Verdon, Q., Boonen, M., Ribes, C., Jadot, M., Gasnier, B., and Sagné, C. (2017). SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein-dependent growth of cancer cells. Proc Natl Acad Sci USA 114, E3602–E3611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, A., Luan, H.H., and Medzhitov, R. (2019). An evolutionary perspective on immunometabolism. Science 363, eaar3932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Yosef, N., Gaublomme, J., Wu, C., Lee, Y., Clish, C.B., Kaminski, J., Xiao, S., Meyer Zu Horste, G., Pawlak, M., et al. (2015a). CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Hardie, R.A., Hoy, A.J., van Geldermalsen, M., Gao, D., Fazli, L., Sadowski, M.C., Balaban, S., Schreuder, M., Nagarajah, R., et al. (2015b). Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol 236, 278–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Tsun, Z.Y., Wolfson, R.L., Shen, K., Wyant, G.A., Plovanich, M. E., Yuan, E.D., Jones, T.D., Chantranupong, L., Comb, W., et al. (2015c). Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Fu, L., Cui, M., Wang, Y., Xu, Y., Li, M., and Mi, J. (2017). Amino acid transporter SLC38A3 promotes metastasis of non-small cell lung cancer cells by activating PDK1. Cancer Lett 393, 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Ward, P.S., Patel, J., Wise, D.R., Abdel-Wahab, O., Bennett, B.D., Coller, H.A., Cross, J.R., Fantin, V.R., Hedvat, C.V., Perl, A.E., et al. (2010). The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg, S.E., Singer, B.D., Steinert, E.M., Martinez, C.A., Mehta, M.M., Martínez-Reyes, I., Gao, P., Helmin, K.A., Abdala-Valencia, H., Sena, L.A., et al. (2019). Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature 565, 495–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellen, K.E., Lu, C., Mancuso, A., Lemons, J.M.S., Ryczko, M., Dennis, J. W., Rabinowitz, J.D., Coller, H.A., and Thompson, C.B. (2010). The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24, 2784–2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, M.A., Lin, C., Rajapakshe, K., Dong, J., Shi, Y., Tsouko, E., Mukhopadhyay, R., Jasso, D., Dawood, W., Coarfa, C., et al. (2017). Glutamine transporters are targets of multiple oncogenic signaling pathways in prostate cancer. Mol Cancer Res 15, 1017–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson, N.J., Boniface, K., Chan, J.R., McKenzie, B.S., Blumenschein, W. M., Mattson, J.D., Basham, B., Smith, K., Chen, T., Morel, F., et al. (2007). Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8, 950–957.

    Article  CAS  PubMed  Google Scholar 

  • Wise, D.R., and Thompson, C.B. (2010). Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35, 427–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise, D.R., Ward, P.S., Shay, J.E.S., Cross, J.R., Gruber, J.J., Sachdeva, U. M., Platt, J.M., DeMatteo, R.G., Simon, M.C., and Thompson, C.B. (2011). Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci USA 108, 19611–19616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, D., Zeng, L., Yao, K., Kong, X., Wu, G., and Yin, Y. (2016). The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications. Amino Acids 48, 2067–2080.

    Article  CAS  PubMed  Google Scholar 

  • Xu, T., Stewart, K.M., Wang, X., Liu, K., Xie, M., Kyu Ryu, J., Li, K., Ma, T., Wang, H., Ni, L., et al. (2017). Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature 548, 228–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S.H., Ito, S., Yang, C., Wang, P., Xiao, M.T., et al. (2011). Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Sundrud, M.S., Skepner, J., and Yamagata, T. (2014). Targeting Th17 cells in autoimmune diseases. Trends Pharmacol Sci 35, 493–500.

    Article  CAS  PubMed  Google Scholar 

  • Yang, K., Shrestha, S., Zeng, H., Karmaus, P.W.F., Neale, G., Vogel, P., Guertin, D.A., Lamb, R.F., and Chi, H. (2013). T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X.O., Nurieva, R., Martinez, G.J., Kang, H.S., Chung, Y., Pappu, B. P., Shah, B., Chang, S.H., Schluns, K.S., Watowich, S.S., et al. (2008). Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Z., Jiang, B., Wang, Y., Ni, H., Zhang, J., Xia, J., Shi, M., Hung, L. M., Ruan, J., Mak, T.W., et al. (2017). 2-HG inhibits necroptosis by stimulating DNMT1-dependent hypermethylation of the RIP3 promoter. Cell Rep 19, 1846–1857.

    Article  CAS  PubMed  Google Scholar 

  • Ye, D., Guan, K.L., and Xiong, Y. (2018). Metabolism, activity, and targeting of D- and L-2-hydroxyglutarates. Trends Cancer 4, 151–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, J., Kumanova, M., Hart, L.S., Sloane, K., Zhang, H., De Panis, D.N., Bobrovnikova-Marjon, E., Diehl, J.A., Ron, D., and Koumenis, C. (2010). The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 29, 2082–2096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yorimitsu, T., Nair, U., Yang, Z., and Klionsky, D.J. (2006). Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281, 30299–30304.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, Q., Song, Y., Yang, C.H., Jan, L.Y., and Jan, Y.N. (2014). Female contact modulates male aggression via a sexually dimorphic GABAergic circuit in Drosophila. Nat Neurosci 17, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, H., and Chi, H. (2017). mTOR signaling in the differentiation and function of regulatory and effector T cells. Curr Opin Immunol 46, 103–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, S., Lin, Y., Xu, W., Jiang, W., Zha, Z., Wang, P., Yu, W., Li, Z., Gong, L., Peng, Y., et al. (2009). Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324, 261–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Lopes, J.E., Chong, M.M.W., Ivanov, I.I., Min, R., Victora, G.D., Shen, Y., Du, J., Rubtsov, Y.P., Rudensky, A.Y., et al. (2008). TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453, 236–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, R.W., Mkhikian, H., Grigorian, A., Hong, A., Chen, D., Arakelyan, A., and Demetriou, M. (2014). N-glycosylation bidirectionally extends the boundaries of thymocyte positive selection by decoupling Lck from Ca2+ signaling. Nat Immunol 15, 1038–1045.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our profound admiration and respect go to researchers in this field and our laboratories, for their dedication and hard work. We apologize to scientists whose work is in this field if their papers are not cited owing to space limitations. This study was supported by the National Natural Science Foundation of China (31922079, 31872365, and 31790411) and Guangdong Basic and Applied Basic Research Foundation (2019B1515210002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenkai Ren.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G., Xia, Y. & Ren, W. Glutamine metabolism in Th17/Treg cell fate: applications in Th17 cell-associated diseases. Sci. China Life Sci. 64, 221–233 (2021). https://doi.org/10.1007/s11427-020-1703-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1703-2

Keywords

Navigation