Skip to main content

Advertisement

Log in

The roles of lncRNAs in Th17-associated diseases, with special focus on JAK/STAT signaling pathway

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

One of the most crucial T cell subsets in a variety of autoimmune and chronic inflammatory illnesses is T helper (Th) 17 cells. Th17 cells appear to have an essential role in the clearance of extracellular pathogens during infections. However, Th17 cells are also involved in inflammation and have been implicated in the pathogenesis of several autoimmune diseases and human inflammatory conditions. Due to the involvement of Th17 cells in the onset of Th17-associated diseases, understanding molecular mechanisms of Th17 cell functions may open the door to developing tailored therapies to address these difficult disorders. However, the molecular mechanisms governing Th17 differentiation in various diseases are still not well understood. The JAK/STAT signaling pathway plays a critical role in immune responses and has been linked to various aspects of Th17 cell differentiation and function. In this article, we conducted a comprehensive review of various molecular mechanisms (JAK/STAT, microRNAs, etc.), that can affect the differentiation of Th17 cells in various Th17-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data and materials availability

Not applicable.

References

  1. Abou Alezz M, Celli L, Belotti G, et al. GC-AG introns features in long non-coding and protein-coding genes suggest their role in gene expression regulation. Front Genet. 2020;11:488.

    PubMed  PubMed Central  Google Scholar 

  2. Akdis CA, Arkwright PD, Brüggen M-C, et al. Type 2 immunity in the skin and lungs. Allergy. 2020;75(7):1582–605.

    CAS  PubMed  Google Scholar 

  3. Alcorn JF, Crowe CR, Kolls JK. TH17 cells in asthma and COPD. Annu Rev Physiol. 2010;72:495–516.

    CAS  PubMed  Google Scholar 

  4. Aliperti V, Skonieczna J, Cerase A. Long non-coding RNA (lncRNA) roles in cell biology, neurodevelopment and neurological disorders. Non-coding RNA. 2021;7(2):36.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Arun G, Diermeier S, Akerman M, et al. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 2016;30(1):34–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Asadzadeh Z, Mohammadi H, Safarzadeh E, et al. The paradox of Th17 cell functions in tumor immunity. Cell Immunol. 2017;322:15–25.

    CAS  PubMed  Google Scholar 

  7. Aslani MR, Sharghi A, Boskabady MH, et al. Altered gene expression levels of IL-17/TRAF6/MAPK/USP25 axis and pro-inflammatory cytokine levels in lung tissue of obese ovalbumin-sensitized rats. Life Sci. 2022;296:120425.

    CAS  PubMed  Google Scholar 

  8. Astry B, Venkatesha SH, Laurence A, et al. Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ. Clin Immunol. 2015;157(2):228–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Azizi G, Jadidi-Niaragh F, Mirshafiey A. Th17 Cells in Immunopathogenesis and treatment of rheumatoid arthritis. Int J Rheum Dis. 2013;16(3):243–53.

    CAS  PubMed  Google Scholar 

  10. Beckwith EJ, Yanovsky MJ. Circadian regulation of gene expression: at the crossroads of transcriptional and post-transcriptional regulatory networks. Curr Opin Genet Dev. 2014;27:35–42.

    CAS  PubMed  Google Scholar 

  11. Behary J, Amorim N, Jiang X-T, et al. Gut microbiota impact on the peripheral immune response in non-alcoholic fatty liver disease related hepatocellular carcinoma. Nat Commun. 2021;12(1):187.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bettelli E, Korn T, Kuchroo VK. Th17: the third member of the effector T cell trilogy. Curr Opin Immunol. 2007;19(6):652–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bian Z, Lei W, Li Q, et al. Gm15575 functions as a ceRNA to up-regulate CCL7 expression through sponging miR-686 in Th17 cells. Mol Immunol. 2020;125:32–42.

    CAS  PubMed  Google Scholar 

  14. Bunte K, Beikler T. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. Int J Mol Sci. 2019;20(14):3394.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Capurso NA, Look M, Jeanbart L, et al. Development of a nanoparticulate formulation of retinoic acid that suppresses Th17 cells and upregulates regulatory T cells. Self/nonself. 2010;1(4):335–40.

    PubMed  PubMed Central  Google Scholar 

  16. Chen F, Chen J, Yang L, et al. Extracellular vesicle-packaged HIF-1α-stabilizing lncRNA from tumour-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 2019;21(4):498–510.

    CAS  PubMed  Google Scholar 

  17. Chen Y, Liu J, Zhang X, et al. lncRNA-GM targets Foxo1 to promote T cell–mediated autoimmunity. Sci Adv. 2022;8(31):eabn9181.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chi X, Guo Y, Zhang L, et al. Long non-coding RNA GAS5 regulates Th17/Treg imbalance in childhood pneumonia by targeting miR-217/STAT5. Cell Immunol. 2021;364:104357.

    CAS  PubMed  Google Scholar 

  19. Codarri L, Gyülvészi G, Tosevski V, et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol. 2011;12(6):560–7.

    CAS  PubMed  Google Scholar 

  20. Dobeš J, Ben-Nun O, Binyamin A, et al. Extrathymic expression of Aire controls the induction of effective TH17 cell-mediated immune response to Candida albicans. Nat Immunol. 2022;23(7):1098–108.

    PubMed  Google Scholar 

  21. El-Behi M, Ciric B, Dai H, et al. The encephalitogenicity of TH17 cells is dependent on IL-1-and IL-23-induced production of the cytokine GM-CSF. Nat Immunol. 2011;12(6):568–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. El Hed A, Khaitan A, Kozhaya L, et al. Susceptibility of human Th17 cells to human immunodeficiency virus and their perturbation during infection. J Infect Dis. 2010;201(6):843–54.

    PubMed  Google Scholar 

  23. ElHed A, Unutmaz D. Th17 cells and HIV infection. Curr Opin HIV AIDS. 2010;5(2):146.

    PubMed  PubMed Central  Google Scholar 

  24. Eyerich K, Eyerich S. Immune response patterns in non-communicable inflammatory skin diseases. J Eur Acad Dermatol Venereol. 2018;32(5):692–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fang Y, Xu Y, Wang R, et al. Recent advances on the roles of LncRNAs in cardiovascular disease. J Cell Mol Med. 2020;24(21):12246–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao Q, Jiang Y, Ma T, et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol. 2010;185(10):5820–7.

    CAS  PubMed  Google Scholar 

  27. Gordon KB, Leonardi CL, Lebwohl M, et al. A 52-week, open-label study of the efficacy and safety of ixekizumab, an anti-interleukin-17A monoclonal antibody, in patients with chronic plaque psoriasis. J Am Acad Dermatol. 2014;71(6):1176–82.

    CAS  PubMed  Google Scholar 

  28. He D, Li H, Yusuf N, et al. IL-17 mediated inflammation promotes tumor growth and progression in the skin. PLoS ONE. 2012;7(2):e32126.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. He D, Xin T, Pang B, et al. A novel lncRNA MDHDH suppresses glioblastoma multiforme by acting as a scaffold for MDH2 and PSMA1 to regulate NAD+ metabolism and autophagy. J Exp Clin Cancer Res. 2022a;41(1):349.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. He H, Qiu X, Qi M, et al. lncRNA STAT4-AS1 inhibited TH17 cell differentiation by targeting RORγt protein. J Immunol Res. 2022b. https://doi.org/10.1155/2022/8307280.

    Article  PubMed  PubMed Central  Google Scholar 

  31. He R-Z, Luo D-X, Mo Y-Y. Emerging roles of lncRNAs in the post-transcriptional regulation in cancer. Genes Diseases. 2019;6(1):6–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu S, Shan G. LncRNAs in stem cells. Stem cells Int. 2016. https://doi.org/10.1155/2016/268192.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huang N, Fan Z, Ma L, et al. Long non-coding RNA RP11-340F14. 6 promotes a shift in the Th17/Treg ratio by binding with P2X7R in juvenile idiopathic arthritis. Int J Mol Med. 2020;46(2):859–68.

    CAS  PubMed  Google Scholar 

  34. Huang Q, Wang Y, He F. Blood long non-coding RNA intersectin 1–2 is highly expressed and links with increased Th17 cells, inflammation, multiple organ dysfunction, and mortality risk in sepsis patients. J Clin Lab Anal. 2022a;36(4):e24330.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang Z-x, Qu P, Wang K-k, et al. Transcriptomic profiling of pemphigus lesion infiltrating mononuclear cells reveals a distinct local immune microenvironment and novel lncRNA regulators. J Transl Med. 2022b;20(1):1–13.

    Google Scholar 

  36. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):1253–61.

    CAS  PubMed  Google Scholar 

  37. Huber M, Heink S, Pagenstecher A, et al. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Investig. 2012;123(1):247–60.

    PubMed  PubMed Central  Google Scholar 

  38. Ibrahim S, Girault A, Ohresser M, et al. Monoclonal antibodies targeting the IL-17/IL-17RA axis: an opportunity to improve the efficiency of anti-VEGF therapy in fighting metastatic colorectal cancer? Clin Colorectal Cancer. 2018;17(1):e109–13.

    PubMed  Google Scholar 

  39. Jarroux J, Morillon A, Pinskaya M. History, discovery, and classification of lncRNAs. Long Non Coding RNA Biol. 2017. https://doi.org/10.1007/978-981-10-5203-3_1.

    Article  Google Scholar 

  40. Johnsson P, Lipovich L, Grandér D, et al. (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochimica et Biophysica Acta (BBA)-General Sub. 1840;3:1063–71.

    Google Scholar 

  41. Karimi E, Azari H, Tahmasebi A, et al. LncRNA-miRNA network analysis across the Th17 cell line reveals biomarker potency of lncRNA NEAT1 and KCNQ1OT1 in multiple sclerosis. J Cell Mol Med. 2022;26(8):2351–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009;2(5):403–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895–910.

    CAS  PubMed  Google Scholar 

  44. Li J-Q, Hu S-Y, Wang Z-Y, et al. Long non-coding RNA MEG3 inhibits microRNA-125a-5p expression and induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura. Biomed Pharmacother. 2016;83:905–11.

    CAS  PubMed  Google Scholar 

  45. Li J, Qiu S-J, She W-M, et al. Significance of the balance between regulatory T (Treg) and T helper 17 (Th17) cells during hepatitis B virus related liver fibrosis. PLoS ONE. 2012;7(6):e39307.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li J, Tian J, Lu J, et al. LncRNA GAS5 inhibits Th17 differentiation and alleviates immune thrombocytopenia via promoting the ubiquitination of STAT3. Int Immunopharmacol. 2020;80:106127.

    CAS  PubMed  Google Scholar 

  47. Li J, Wang L, Wang S, et al. The Treg/Th17 imbalance in patients with idiopathic dilated cardiomyopathy. Scand J Immunol. 2010;71(4):298–303.

    CAS  PubMed  Google Scholar 

  48. Li S, Li B, Zheng Y, et al. Exploring functions of long noncoding RNAs across multiple cancers through co-expression network. Sci Rep. 2017;7(1):754.

    PubMed  PubMed Central  Google Scholar 

  49. Li W, Zhang X, Yang Y, et al. Recognition of conserved antigens by Th17 cells provides broad protection against pulmonary Haemophilus influenzae infection. Proc Natl Acad Sci. 2018;115(30):E7149–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin X, Zhuang S, Chen X, et al. lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol Ther. 2022;30(2):688–702.

    CAS  PubMed  Google Scholar 

  51. Liu C, Zhang Y, Ma Z, et al. Long noncoding RNAs as orchestrators of CD4+ T-cell fate. Front Cell Dev Biol. 2022;10:831215.

    PubMed  PubMed Central  Google Scholar 

  52. Liu D, Li Y, Luo G, et al. LncRNA SPRY4-IT1 sponges miR-101-3p to promote proliferation and metastasis of bladder cancer cells through up-regulating EZH2. Cancer Lett. 2017;388:281–91.

    CAS  PubMed  Google Scholar 

  53. Liu L, Lu J, Allan BW, et al. Generation and characterization of ixekizumab, a humanized monoclonal antibody that neutralizes interleukin-17A. J Inflamm Res. 2016. https://doi.org/10.2147/JIR.S100940.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu S, Liu F, Zhang B, et al. CD4+ T helper 17 cell response of aged mice promotes prostate cancer cell migration and invasion. Prostate. 2020;80(10):764–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu S, Wu L, Qi H, et al. LncRNA/circRNA–miRNA–mRNA networks regulate the development of root and shoot meristems of Populus. Ind Crops Prod. 2019;133:333–47.

    CAS  Google Scholar 

  56. Liu Z, Liu L, Zhong Y, et al. LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell Biosci. 2019;9(1):1–10.

    PubMed  PubMed Central  Google Scholar 

  57. Lock C, Hermans G, Pedotti R, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med. 2002;8(5):500–8.

    CAS  PubMed  Google Scholar 

  58. Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Investig Dermatol. 2008;128(5):1207–11.

    CAS  PubMed  Google Scholar 

  59. Lu M, Qin X, Yao J, et al. Th17/Treg imbalance modulates rat myocardial fibrosis and heart failure by regulating LOX expression. Acta Physiol. 2020;230(3):e13537.

    CAS  Google Scholar 

  60. Lyadova I, Panteleev A. Th1 and Th17 cells in tuberculosis: protection, pathology, and biomarkers. Med Inflamm. 2015. https://doi.org/10.1155/2015/854507.

    Article  Google Scholar 

  61. Magliozzi R, Hametner S, Facchiano F, et al. Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis. Annals Clin Trans Neurol. 2019;6(11):2150–63.

    CAS  Google Scholar 

  62. Mardi A, Meidaninikjeh S, Nikfarjam S, et al. Interleukin-1 in COVID-19 infection: immunopathogenesis and possible therapeutic perspective. Viral Immunol. 2021;34(10):679–88.

    CAS  PubMed  Google Scholar 

  63. Masoumi F, Ghorbani S, Talebi F, et al. Malat1 long noncoding RNA regulates inflammation and leukocyte differentiation in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2019;328:50–9.

    CAS  PubMed  Google Scholar 

  64. Matsushita T, Tateishi T, Isobe N, et al. Characteristic cerebrospinal fluid cytokine/chemokine profiles in neuromyelitis optica, relapsing remitting or primary progressive multiple sclerosis. PLoS ONE. 2013;8(4):e61835.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. McInnes IB, Mease PJ, Kirkham B, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet. 2015;386(9999):1137–46.

    CAS  Google Scholar 

  66. McKinley L, Alcorn JF, Peterson A, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol. 2008;181(6):4089–97.

    CAS  PubMed  Google Scholar 

  67. Mease P, van der Heijde D, Landewé R, et al. Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression: primary results from the randomised, double-blind, phase III FUTURE 5 study. Ann Rheum Dis. 2018;77(6):890–7.

    CAS  PubMed  Google Scholar 

  68. Mease PJ, Genovese MC, Greenwald MW, et al. Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med. 2014;370(24):2295–306.

    PubMed  Google Scholar 

  69. Meitei HT, Jadhav N, Lal G. CCR6-CCL20 axis as a therapeutic target for autoimmune diseases. Autoimmun Rev. 2021;20(7):102846.

    CAS  PubMed  Google Scholar 

  70. Moffitt KL, Gierahn TM, Lu Y-j, et al. TH17-based vaccine design for prevention of Streptococcus pneumoniae colonization. Cell Host Microbe. 2011;9(2):158–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Moharamoghli M, Hassan-Zadeh V, Dolatshahi E, et al. The expression of GAS5, THRIL, and RMRP lncRNAs is increased in T cells of patients with rheumatoid arthritis. Clin Rheumatol. 2019;38:3073–80.

    PubMed  Google Scholar 

  72. Morelli E, Gulla’ A, Amodio N, et al. CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) to explore the oncogenic lncRNA network. In: Navarro A, editor., et al., Long Non-Coding RNAs in Cancer. New York, NY: Springer US; 2021. p. 189–204. https://doi.org/10.1007/978-1-0716-1581-2_13.

    Chapter  Google Scholar 

  73. Naderi-Meshkin H, Lai X, Amirkhah R, et al. Exosomal lncRNAs and cancer: connecting the missing links. Bioinformatics. 2019;35(2):352–60.

    CAS  PubMed  Google Scholar 

  74. Niu L, Jiang J, Yin Y, et al. LncRNA XLOC_003810 modulates thymic Th17/Treg balance in myasthenia gravis with thymoma. Clin Exp Pharmacol Physiol. 2020;47(6):989–96.

    CAS  PubMed  Google Scholar 

  75. Orlov M, Wander PL, Morrell ED, et al. A case for targeting Th17 cells and IL-17A in SARS-CoV-2 infections. J Immunol. 2020;205(4):892–8.

    CAS  PubMed  Google Scholar 

  76. Özeş AR, Wang Y, Zong X, et al. Therapeutic targeting using tumor specific peptides inhibits long non-coding RNA HOTAIR activity in ovarian and breast cancer. Sci Rep. 2017;7(1):894.

    PubMed  PubMed Central  Google Scholar 

  77. Pandiyan P, Bhaskaran N, Zou M, et al. Microbiome dependent regulation of Tregs and Th17 cells in mucosa. Front Immunol. 2019;10:426.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Pelletier M, Maggi L, Micheletti A, et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood, J Am Soc Hematol. 2010;115(2):335–43.

    CAS  Google Scholar 

  79. Pisignano G, Ladomery M. Epigenetic regulation of alternative splicing: how LncRNAs tailor the message. Non-coding RNA. 2021;7(1):21.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Potekhina AV, Pylaeva E, Provatorov S, et al. Treg/Th17 balance in stable CAD patients with different stages of coronary atherosclerosis. Atherosclerosis. 2015;238(1):17–21.

    CAS  PubMed  Google Scholar 

  81. Protopsaltis NJ, Liang W, Nudleman E, et al. Interleukin-22 promotes tumor angiogenesis. Angiogenesis. 2019;22:311–23.

    CAS  PubMed  Google Scholar 

  82. Qian X, Chen H, Wu X, et al. Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine. 2017;89:34–44.

    CAS  PubMed  Google Scholar 

  83. Qin L, Qiu K, Hu C, et al. Respiratory syncytial virus promoted the differentiation of Th17 cells in airway microenvironment through activation of Notch-1/Delta3. J Med Microbiol. 2019;68(4):649–56.

    CAS  PubMed  Google Scholar 

  84. Qiu Y-y, Wu Y, Lin M-j, et al. LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting microRNA-17/RORγt. Biomed Pharmacother. 2019;111:386–94.

    CAS  PubMed  Google Scholar 

  85. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62.

    CAS  PubMed  Google Scholar 

  86. Rathore JS, Wang Y. Protective role of Th17 cells in pulmonary infection. Vaccine. 2016;34(13):1504–14.

    CAS  PubMed  Google Scholar 

  87. Ren B, Song Z, Chen L, et al. Long non-coding RNA UCA1 correlates with elevated disease severity, Th17 cell proportion, inflammatory cytokines, and worse prognosis in acute ischemic stroke patients. J Clin Lab Anal. 2021;35(3):e23697.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Rizzo A, De Mare V, Rocchi C, et al. Smad7 induces plasticity in tumor-infiltrating Th17 cells and enables TNF-alpha-mediated killing of colorectal cancer cells. Carcinogenesis. 2014;35(7):1536–46.

    CAS  PubMed  Google Scholar 

  89. Robert M, Miossec P. Interleukin-17 and lupus: enough to be a target? For which patients? Lupus. 2020;29(1):6–14.

    CAS  PubMed  Google Scholar 

  90. Schechter MC, Satola SW and Stephens DS. Host defenses to extracellular bacteria. Clinical immunology, pp 391–402. e391, Elsevier; (2019).

  91. Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73:2491–509.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, et al. The role of lncRNAs in gene expression regulation through mRNA stabilization. Non-coding RNA. 2021;7(1):3.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Shechner DM, Hacisuleyman E, Younger ST, et al. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. 2015;12(7):664–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shui X, Chen S, Lin J, et al. Knockdown of lncRNA NEAT1 inhibits Th17/CD4+ T cell differentiation through reducing the STAT3 protein level. J Cell Physiol. 2019;234(12):22477–84.

    CAS  PubMed  Google Scholar 

  95. Statello L, Guo C-J, Chen L-L, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.

    CAS  PubMed  Google Scholar 

  96. Sun J, Jia H, Bao X, et al. Tumor exosome promotes Th17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer. Cell Death Dis. 2021;12(1):123.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tang S, Xie Z, Wang P, et al. LncRNA-OG promotes the osteogenic differentiation of bone marrow-derived mesenchymal stem cells under the regulation of hnRNPK. Stem Cells. 2019;37(2):270–83.

    CAS  PubMed  Google Scholar 

  98. Tsai M-C, Manor O, Wan Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tye CE, Gordon JA, Martin-Buley LA, et al. Could lncRNAs be the missing links in control of mesenchymal stem cell differentiation? J Cell Physiol. 2015;230(3):526–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. van den Broek B, van der Flier M, van de Kar NC, et al. Eculizumab impairs killing of Neisseria meningitidis serogroup B in atypical hemolytic uremic syndrome patients vaccinated with MenB-4C. Kidney Int. 2022;101(6):1293–5.

    PubMed  Google Scholar 

  101. Wan Z, Zhou Z, Liu Y, et al. Regulatory T cells and T helper 17 cells in viral infection. Scand J Immunol. 2020;91(5):e12873.

    PubMed  Google Scholar 

  102. Wang J, Liu S, Shi J, et al. The role of lncRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Curr Stem Cell Res Ther. 2020;15(3):243–9.

    CAS  PubMed  Google Scholar 

  103. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wen Y, Zeng Z, Gui C, et al. Changes in the expression of Th17 cell-associated cytokines in the development of rheumatic heart disease. Cardiovasc Pathol. 2015;24(6):382–7.

    CAS  PubMed  Google Scholar 

  105. Xia Y, Brown ZJ, Huang H, et al. Metabolic reprogramming of immune cells: Shaping the tumor microenvironment in hepatocellular carcinoma. Cancer Med. 2021;10(18):6374–83.

    PubMed  PubMed Central  Google Scholar 

  106. Xia Y, Xiao X, Deng X, et al. Targeting long non-coding RNA ASBEL with oligonucleotide antagonist for breast cancer therapy. Biochem Biophys Res Commun. 2017;489(4):386–92.

    CAS  PubMed  Google Scholar 

  107. Xiu B, Chi Y, Liu L, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol Cancer. 2019;18:1–20.

    Google Scholar 

  108. Xu B, Meng Y, Jin Y. RNA structures in alternative splicing and back-splicing. Wiley Interdiscip Rev: RNA. 2021;12(1):e1626.

    CAS  PubMed  Google Scholar 

  109. Xu J, Xu J, Liu X, et al. The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer. Cell Death Discov. 2022;8(1):287.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Xue-Song L, Cheng-Zhong L, Ying Z, et al. Changes of Treg and Th17 cells balance in the development of acute and chronic hepatitis B virus infection. BMC Gastroenterol. 2012;12(1):1–9.

    Google Scholar 

  111. Yao Y, Jiang Q, Jiang L, et al. Lnc-SGK1 induced by Helicobacter pylori infection and highsalt diet promote Th2 and Th17 differentiation in human gastric cancer by SGK1/Jun B signaling. Oncotarget. 2016;7(15):20549.

    PubMed  PubMed Central  Google Scholar 

  112. Yasuda K, Takeuchi Y and Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Seminars in immunopathology, 283–297, Springer, (2019).

  113. Ye J, Livergood RS, Peng G. The role and regulation of human Th17 cells in tumor immunity. Am J Pathol. 2013;182(1):10–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Yosef N, Shalek AK, Gaublomme JT, et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature. 2013;496(7446):461–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang C, Ge S, Gong W, et al. LncRNA ANRIL acts as a modular scaffold of WDR5 and HDAC3 complexes and promotes alteration of the vascular smooth muscle cell phenotype. Cell Death Dis. 2020;11(6):435.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang F, Liu G, Li D, et al. DDIT4 and associated lncDDIT4 modulate Th17 differentiation through the DDIT4/TSC/mTOR pathway. J Immunol. 2018;200(5):1618–26.

    CAS  PubMed  Google Scholar 

  117. Zhang P, Wu S, He Y, et al. LncRNA-mediated adipogenesis in different adipocytes. Int J Mol Sci. 2022a;23(13):7488.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhang W, Chen B, Chen W. LncRNA GAS5 relates to Th17 cells and serves as a potential biomarker for sepsis inflammation, organ dysfunctions and mortality risk. J Clin Lab Anal. 2022b;36(5):e24309.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang Y, Luo M, Cui X, et al. Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362-3p/MIOX axis as a ceRNA. Cell Death Differ. 2022c;29(9):1850–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhao R, Fu J, Zhu L, et al. Designing strategies of small-molecule compounds for modulating non-coding RNAs in cancer therapy. J Hematol Oncol. 2022;15(1):1–19.

    Google Scholar 

  121. Zhao Y, Jamaluddin M, Zhang Y, et al. Systematic analysis of cell-type differences in the epithelial secretome reveals insights into the pathogenesis of respiratory syncytial virus–induced lower respiratory tract infections. J Immunol. 2017;198(8):3345–64.

    CAS  PubMed  Google Scholar 

  122. Zhu L, Lin X, Chen M. LncRNA NEAT1 correlates with Th17 cells and proinflammatory cytokines, also reflects stenosis degree and cholesterol level in coronary heart disease patients. J Clin Lab Anal. 2022;36(6):e23975.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

None.

Funding

No Funders.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and the main idea of the work. H.W, L.Y, and L.C drafted the main text, figures, and tables. Z.G supervised the work and provided the comments and additional scientific information. All authors read and approved the final version of the work to be published.

Corresponding author

Correspondence to Zhigang Guo.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yu, L., Cheng, L. et al. The roles of lncRNAs in Th17-associated diseases, with special focus on JAK/STAT signaling pathway. Clin Exp Med 23, 3349–3359 (2023). https://doi.org/10.1007/s10238-023-01181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-023-01181-3

Keywords

Navigation