Skip to main content
Log in

Cardiac Na+-Ca2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Ca2+ signaling is critical for heart development; however, the precise roles and regulatory pathways of Ca2+ transport proteins in cardiogenesis remain largely unknown. Sodium-calcium exchanger 1 (Ncx1) is responsible for Ca2+ efflux in cardiomyocytes. It is involved in cardiogenesis, while the mechanism is unclear. Here, using the forward genetic screening in zebrafish, we identified a novel mutation at a highly-conserved leucine residue in ncx1 gene (mutantLDD353/ncx1hL154P) that led to smaller hearts with reduced heart rate and weak contraction. Mechanistically, the number of ventricular but not atrial cardiomyocytes was reduced in ncx1hL154P zebrafish. These defects were mimicked by knockdown or knockout of ncx1h. Moreover, ncx1hL154P had cytosolic and mitochondrial Ca2+ overloading and Ca2+ transient suppression in cardiomyocytes. Furthermore, ncx1hL154P and ncx1h morphants downregulated cardiac transcription factors hand2 and gata4 in the cardiac regions, while overexpression of hand2 and gata4 partially rescued cardiac defects including the number of ventricular myocytes. These findings demonstrate an essential role of the novel 154th leucine residue in the maintenance of Ncx1 function in zebrafish, and reveal previous unrecognized critical roles of the 154th leucine residue and Ncx1 in the formation of ventricular cardiomyocytes by at least partially regulating the expression levels of gata4 and hand2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barth, E., Stammler, G., Speiser, B., and Schaper, J. (1992). Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. J Mol Cell Cardiol 24, 669–681.

    Article  CAS  PubMed  Google Scholar 

  • Berridge, M.J. (2016). The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol Rev 96, 1261–1296.

    Article  CAS  PubMed  Google Scholar 

  • Brini, M., and Carafoli, E. (2009). Calcium pumps in health and disease. Physiol Rev 89, 1341–1378.

    Article  CAS  PubMed  Google Scholar 

  • Bruneau, B.G. (2008). The developmental genetics of congenital heart disease. Nature 451, 943–948.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J.N., Haffter, P., Odenthal, J., Vogelsang, E., Brand, M., van Eeden, F.J., Furutani-Seiki, M., Granato, M., Hammerschmidt, M., Heisenberg, C.P., et al. (1996). Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123, 293–302.

    CAS  PubMed  Google Scholar 

  • Dai, Y.S., Cserjesi, P., Markham, B.E., and Molkentin, J.D. (2002). The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism. J Biol Chem 277, 24390–24398.

    Article  CAS  PubMed  Google Scholar 

  • Deacon, D.C., Nevis, K.R., Cashman, T.J., Zhou, Y., Zhao, L., Washko, D., Guner-Ataman, B., Burns, C.G., and Burns, C.E. (2010). The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis. Development 137, 1887–1896.

    Article  CAS  PubMed  Google Scholar 

  • Ebert, A.M., Hume, G.L., Warren, K.S., Cook, N.P., Burns, C.G., Mohideen, M.A., Siegal, G., Yelon, D., Fishman, M.C., and Garrity, D.M. (2005). Calcium extrusion is critical for cardiac morphogenesis and rhythm in embryonic zebrafish hearts. Proc Natl Acad Sci USA 102, 17705–17710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, J., Yu, H., Wang, R., Liang, J., and Yang, H. (2006). Developmental regulation of intracellular calcium transients during cardiomyocyte differentiation of mouse embryonic stem cells1. Acta Pharmacol Sin 27, 901–910.

    Article  CAS  PubMed  Google Scholar 

  • Gao, L., Li, D., Ma, K., Zhang, W., Xu, T., Fu, C., Jing, C., Jia, X., Wu, S., Sun, X., et al. (2015). TopBP1 governs hematopoietic stem/progenitor cells survival in zebrafish definitive hematopoiesis. PLoS Genet 11, e1005346.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graier, W.F., Frieden, M., and Malli, R. (2007). Mitochondria and Ca2+ signaling: old guests, new functions. Pflugers Arch Eur J Physiol 455, 375–396.

    Article  CAS  Google Scholar 

  • Guo, A., and Yang, H.T. (2009). Ca2+ removal mechanisms in mouse embryonic stem cell-derived cardiomyocytes. Am J Physiol Cell Physiol 297, C732–C741.

    Article  CAS  PubMed  Google Scholar 

  • Hinits, Y., Pan, L., Walker, C., Dowd, J., Moens, C.B., and Hughes, S.M. (2012). Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation. Dev Biol 369, 199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J., Zhang, M., Zhang, P., Liang, H., Ouyang, K., and Yang, H.T. (2016). Coupling switch of P2Y-IP3 receptors mediates differential Ca2+ signaling in human embryonic stem cells and derived cardiovascular progenitor cells. Purinergic Signal 12, 465–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, D., Ni, T.T., Hou, J., Rellinger, E., and Zhong, T.P. (2009). Promoter analysis of ventricular myosin heavy chain (vmhc) in zebrafish embryos. Dev Dyn 238, 1760–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing, C.B., Chen, Y., Dong, M., Peng, X.L., Jia, X.E., Gao, L., Ma, K., Deng, M., Liu, T.X., Zon, L.I., et al. (2013). Phospholipase C gamma-1 is required for granulocyte maturation in zebrafish. Dev Biol 374, 24–31.

    Article  CAS  PubMed  Google Scholar 

  • Khananshvili, D. (2013). The SLC8 gene family of sodium-calcium exchangers (NCX)—Structure, function, and regulation in health and disease. Mol Aspects Med 34, 220–235.

    Article  CAS  PubMed  Google Scholar 

  • Koban, M.U., Brugh, S.A., Riordon, D.R., Dellow, K.A., Yang, H.T., Tweedie, D., and Boheler, K.R. (2001). A distant upstream region of the rat multipartite Na+-Ca2+ exchanger NCX1 gene promoter is sufficient to confer cardiac-specific expression. Mech Dev 109, 267–279.

    Article  CAS  PubMed  Google Scholar 

  • Koushik, S.V., Bundy, J., and Conway, S.J. (1999). Sodium-calcium exchanger is initially expressed in a heart-restricted pattern within the early mouse embryo. Mech Dev 88, 119–122.

    Article  CAS  PubMed  Google Scholar 

  • Koushik, S.V., Wang, J., Rogers, R., Moskophidis, D., Lambert, N.A., Creazzo, T.L., and Conway, S.J. (2001). Targeted inactivation of the sodium-calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J 15, 1209–1211.

    Article  CAS  PubMed  Google Scholar 

  • Langenbacher, A.D., Dong, Y., Shu, X., Choi, J., Nicoll, D.A., Goldhaber, J.I., Philipson, K.D., and Chen, J.N. (2005). Mutation in sodium-calcium exchanger 1 (NCX1) causes cardiac fibrillation in zebrafish. Proc Natl Acad Sci USA 102, 17699–17704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laude, A.J., and Simpson, A.W.M. (2009). Compartmentalized signalling: Ca2+ compartments, microdomains and the many facets of Ca2+ signalling. FEBS J 276, 1800–1816.

    Article  CAS  PubMed  Google Scholar 

  • Liang, J., Wang, Y.J., Tang, Y., Cao, N., Wang, J., and Yang, H.T. (2010). Type 3 inositol 1,4,5-trisphosphate receptor negatively regulates apoptosis during mouse embryonic stem cell differentiation. Cell Death Differ 17, 1141–1154.

    Article  CAS  PubMed  Google Scholar 

  • Linask, K.L., and Linask, K.K. (2010). Calcium channel blockade in embryonic cardiac progenitor cells disrupts normal cardiac cell differentiation. Stem Cells Dev 19, 1959–1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, D., Wang, Z., Xiao, A., Zhang, Y., Li, W., Zu, Y., Yao, S., Lin, S., and Zhang, B. (2014). Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect. J Genet Genomics 41, 43–46.

    Article  PubMed  CAS  Google Scholar 

  • Lu, F., Langenbacher, A.D., and Chen, J.N. (2016). Transcriptional regulation of heart development in zebrafish. J Cardiovasc Dev Dis 3.

  • McFadden, D.G., Barbosa, A.C., Richardson, J.A., Schneider, M.D., Srivastava, D., and Olson, E.N. (2005). The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 132, 189–201.

    Article  CAS  PubMed  Google Scholar 

  • Meng, Z.Z., Liu, W., Xia, Y., Yin, H.M., Zhang, C.Y., Su, D., Yan, L.F., Gu, A.H., and Zhou, Y. (2017). The pro-inflammatory signalling regulator Stat4 promotes vasculogenesis of great vessels derived from endothelial precursors. Nat Commun 8, 14640.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizuno, H., Sassa, T., Higashijima, S.I., Okamoto, H., and Miyawaki, A. (2013). Transgenic zebrafish for ratiometric imaging of cytosolic and mitochondrial Ca2+ response in teleost embryo. Cell Calcium 54, 236–245.

    Article  CAS  PubMed  Google Scholar 

  • Moorman, A.F.M., and Christoffels, V.M. (2003). Cardiac chamber formation: development, genes, and evolution. Physiol Rev 83, 1223–1267.

    Article  CAS  PubMed  Google Scholar 

  • North, T.E., Goessling, W., Peeters, M., Li, P., Ceol, C., Lord, A.M., Weber, G.J., Harris, J., Cutting, C.C., Huang, P., et al. (2009). Hematopoietic stem cell development is dependent on blood flow. Cell 137, 736–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottolia, M., Nicoll, D.A., and Philipson, K.D. (2005). Mutational analysis of the α-1 repeat of the cardiac Na+-Ca2+ exchanger. J Biol Chem 280, 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  • Porter Jr., G.A., Makuck, R.F., and Rivkees, S.A. (2003). Intracellular calcium plays an essential role in cardiac development. Dev Dyn 227, 280–290.

    Article  CAS  PubMed  Google Scholar 

  • Prall, O.W.J., Menon, M.K., Solloway, M.J., Watanabe, Y., Zaffran, S., Bajolle, F., Biben, C., McBride, J.J., Robertson, B.R., Chaulet, H., et al. (2007). An Nkx2–5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128, 947–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prendiville, T., Jay, P.Y., and Pu, W.T. (2014). Insights into the genetic structure of congenital heart disease from human and murine studies on monogenic disorders. Cold Spring Harb Perspect Med 4, a013946.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pucéat, M., and Jaconi, M. (2005). Ca2+ signalling in cardiogenesis. Cell Calcium 38, 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682.

    Article  CAS  PubMed  Google Scholar 

  • Schindler, Y.L., Garske, K.M., Wang, J., Firulli, B.A., Firulli, A.B., Poss, K.D., and Yelon, D. (2014). Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 141, 3112–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenebeck, J.J., Keegan, B.R., and Yelon, D. (2007). Vessel and blood specification override cardiac potential in anterior mesoderm. Dev Cell 13, 254–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehnert, A.J., Huq, A., Weinstein, B.M., Walker, C., Fishman, M., and Stainier, D.Y.R. (2002). Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31, 106–110.

    Article  CAS  PubMed  Google Scholar 

  • Song, Q., Huang, M., Wang, B., Kang, X., and Wang, C. (2018). Bidirectional regulation of Ca2+ in exo-endocytosis coupling. Sci China Life Sci 61, 1583–1585.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, D., Thomas, T., Lin, Q., Kirby, M.L., Brown, D., and Olson, E. N. (1997). Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16, 154–160.

    Article  CAS  PubMed  Google Scholar 

  • Stainier, D.Y., Fouquet, B., Chen, J.N., Warren, K.S., Weinstein, B.M., Meiler, S.E., Mohideen, M.A., Neuhauss, S.C., Solnica-Krezel, L., Schier, A.F., et al. (1996). Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 123, 285–292.

    CAS  PubMed  Google Scholar 

  • Staudt, D., and Stainier, D. (2012). Uncovering the molecular and cellular mechanisms ofheart development using the zebrafish. Annu Rev Genet 46, 397–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y.M., Wang, J., Qiu, X.B., Yuan, F., Li, R.G., Xu, Y.J., Qu, X.K., Shi, H.Y., Hou, X.M., Huang, R.T., et al. (2016). A HAND2 loss-of-function mutation causes familial ventricular septal defect and pulmonary stenosis. G3 6, 987–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong, X., Zu, Y., Li, Z., Li, W., Ying, L., Yang, J., Wang, X., He, S., Liu, D., Zhu, Z., et al. (2014). Kctd10 regulates heart morphogenesis by repressing the transcriptional activity of Tbx5a in zebrafish. Nat Commun 5, 3153.

    Article  PubMed  CAS  Google Scholar 

  • Tse, M.K., Hung, T.S., Chan, C.M., Wong, T., Dorothea, M., Leclerc, C., Moreau, M., Miller, A.L., and Webb, S.E. (2018). Identification of Ca2+ signaling components in neural stem/progenitor cells during differentiation into neurons and glia in intact and dissociated zebrafish neurospheres. Sci China Life Sci 61, 1352–1368.

    Article  CAS  PubMed  Google Scholar 

  • Tu, S., and Chi, N.C. (2012). Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 84, 4–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vincentz, J.W., Barnes, R.M., and Firulli, A.B. (2011). Hand factors as regulators of cardiac morphogenesis and implications for congenital heart defects. Birth Defects Res A Clin Mol Teratol 91, 485–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakimoto, K., Kobayashi, K., Kuro-O, M., Yao, A., Iwamoto, T., Yanaka, N., Kita, S., Nishida, A., Azuma, S., Toyoda, Y., et al. (2000). Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J Biol Chem 275, 36991–36998.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y.J., Huang, J., Liu, W., Kou, X., Tang, H., Wang, H., Yu, X., Gao, S., Ouyang, K., and Yang, H.T. (2017). IP3R-mediated Ca2+ signals govern hematopoietic and cardiac divergence of Flk1+ cells via the calcineurin-NFATc3-Etv2 pathway. J Mol Cell Biol 9, 274–288.

    Article  CAS  PubMed  Google Scholar 

  • Wansleeben, C., Feitsma, H., Tertoolen, L., Kroon, C., Guryev, V., Cuppen, E., and Meijlink, F. (2010). A novel mutant allele of Ncx1: a single amino acid substitution leads to cardiac dysfunction. Int J Dev Biol 54, 1465–1470.

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi, H., Yamagishi, C., Nakagawa, O., Harvey, R.P., Olson, E.N., and Srivastava, D. (2001). The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev Biol 239, 190–203.

    Article  CAS  PubMed  Google Scholar 

  • Yelon, D., Horne, S.A., and Stainier, D.Y.R. (1999). Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev Biol 214, 23–37.

    Article  CAS  PubMed  Google Scholar 

  • Zeisberg, E.M., Ma, Q., Juraszek, A.L., Moses, K., Schwartz, R.J., Izumo, S., and Pu, W.T. (2005). Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115, 1522–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Cashman, T.J., Nevis, K.R., Obregon, P., Carney, S.A., Liu, Y., Gu, A., Mosimann, C., Sondalle, S., Peterson, R.E., et al. (2011). Latent TGF-β binding protein 3 identifies a second heart field in zebrafish. Nature 474, 645–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., and Zon, L.I. (2011). The zon laboratory guide to positional cloning in zebrafish. Methods Cell Biol 104, 287–309.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81520108004, 81470422), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16010201), and National Key R&D Program of China (2017YFA 0103700, 2016YFC1301204) to H.-T.Y., and Shanghai Natural Science Foundation (17ZR1435500) to J.H. We acknowledge Dr. Atsushi Miyawaki and Dr. Akiko Ishioka for providing the two Ca2+ indicator transgenic zebrafish lines, and Prof. Tao Zhong for providing the vmhc-EGFP plasmid. We also thank Min Den, Yi Jin, Mei Dong, and Yukun Jiang for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhou or Huang-Tian Yang.

Ethics declarations

The author(s) declare that they have no conflict of interest. All applicable institutional and national guidelines for the care and use of animals were followed.

Supplementary Materials

Supplementary material, approximately 5.37 MB.

Supplementary material, approximately 4.97 MB.

Supplementary material, approximately 4.87 MB.

11427_2019_1706_MOESM4_ESM.docx

Cardiac Na+-Ca2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish

Supplementary material, approximately 27.4 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, L., Yin, H., Gao, L. et al. Cardiac Na+-Ca2+ exchanger 1 (ncx1h) is critical for the ventricular cardiomyocyte formation via regulating the expression levels of gata4 and hand2 in zebrafish. Sci. China Life Sci. 64, 255–268 (2021). https://doi.org/10.1007/s11427-019-1706-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1706-1

Keywords

Navigation