Skip to main content
Log in

Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Microbial extracellular electron transfer (EET) is electron exchanges between the quinol/quinone pools in microbial cytoplasmic membrane and extracellular substrates. Microorganisms with EET capabilities are widespread in Earth hydrosphere, such as sediments of rivers, lakes and oceans, where they play crucial roles in biogeochemical cycling of key elements, including carbon, nitrogen, sulfur, iron and manganese. Over the past 12 years, significant progress has been made in mechanistic understanding of microbial EET at the molecular level. In this review, we focus on the molecular mechanisms underlying the microbial ability for extracellular redox transformation of iron, direct interspecies electron transfer as well as long distance electron transfer mediated by the cable bacteria in the hydrosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albers, S.V., and Meyer, B.H. (2011). The archaeal cell envelope. Nat Rev Micro 9, 414–426.

    CAS  Google Scholar 

  • Beal, E.J., House, C.H., and Orphan, V.J. (2009). Manganese-and irondependent marine methane oxidation. Science 325, 184–187.

    CAS  Google Scholar 

  • Beblawy, S., Bursac, T., Paquete, C., Louro, R., Clarke, T.A., and Gescher, J. (2018). Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Mol Microbiol 109, 571–583.

    CAS  PubMed  Google Scholar 

  • Beckwith, C.R., Edwards, M.J., Lawes, M., Shi, L., Butt, J.N., Richardson, D.J., and Clarke, T.A. (2015). Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth. Front Microbiol 6, 332.

    PubMed  PubMed Central  Google Scholar 

  • Bird, L.J., Bonnefoy, V., and Newman, D.K. (2011). Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 19, 330–340.

    CAS  PubMed  Google Scholar 

  • Bird, L.J., Saraiva, I.H., Park, S., Calçada, E.O., Salgueiro, C.A., Nitschke, W., Louro, R.O., and Newman, D.K. (2014). Nonredundant roles for cytochrome c2 and two high-potential iron-sulfur proteins in the photoferrotroph Rhodopseudomonas palustris TIE-1. J Bacteriol 196, 850–858.

    PubMed  PubMed Central  Google Scholar 

  • Bjerg, J.T., Boschker, H.T.S., Larsen, S., Berry, D., Schmid, M., Millo, D., Tataru, P., Meysman, F.J.R., Wagner, M., Nielsen, L.P., et al. (2018). Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA 115, 5786–5791.

    CAS  PubMed  Google Scholar 

  • Bose, A., Gardel, E.J., Vidoudez, C., Parra, E.A., and Girguis, P.R. (2014). Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun 5, 3391.

    CAS  PubMed  Google Scholar 

  • Byrne, J.M., Klueglein, N., Pearce, C., Rosso, K.M., Appel, E., and Kappler, A. (2015). Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476.

    CAS  PubMed  Google Scholar 

  • Cai, C., Leu, A.O., Xie, G.J., Guo, J., Feng, Y., Zhao, J.X., Tyson, G.W., Yuan, Z., and Hu, S. (2018). A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J 12, 1929–1939.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson, H.K., Iavarone, A.T., Gorur, A., Siang Yeo, B., Tran, R., Melnyk, R.A., Mathies, R.A., Auer, M., and Coates, J.D. (2012). Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci USA 109, 1702–1707.

    CAS  PubMed  Google Scholar 

  • Castelle, C., Guiral, M., Malarte, G., Ledgham, F., Leroy, G., Brugna, M., and Giudici-Orticoni, M.T. (2008). A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem 283, 25803–25811.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, C.H., Levar, C.E., Jiménez-Otero, F., and Bond, D.R. (2017). Genome scale mutational analysis of geobacter sulfurreducens reveals distinct molecular mechanisms for respiration and sensing of poised electrodes versus Fe(III) oxides. J Bacteriol 199.

    Google Scholar 

  • Cologgi, D.L., Lampa-Pastirk, S., Speers, A.M., Kelly, S.D., and Reguera, G. (2011). Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci USA 108, 15248–15252.

    CAS  PubMed  Google Scholar 

  • Conley, B.E., Intile, P.J., Bond, D.R., and Gralnick, J.A. (2018). Divergent Nrf family proteins and MtrCAB homologs facilitate extracellular electron transfer in Aeromonas hydrophila. Appl Environ Microbiol 84.

    Google Scholar 

  • Deng, X., Dohmae, N., Nealson, K.H., Hashimoto, K., and Okamoto, A. (2018). Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Sci Adv 4, eaao5682.

    Google Scholar 

  • Dinh, H.T., Kuever, J., Mussmann, M., Hassel, A.W., Stratmann, M., and Widdel, F. (2004). Iron corrosion by novel anaerobic microorganisms. Nature 427, 829–832.

    CAS  PubMed  Google Scholar 

  • El-Naggar, M.Y., Wanger, G., Leung, K.M., Yuzvinsky, T.D., Southam, G., Yang, J., Lau, W.M., Nealson, K.H., and Gorby, Y.A. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci USA 107, 18127–18131.

    CAS  PubMed  Google Scholar 

  • Emerson, D., Fleming, E.J., and McBeth, J.M. (2010). Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64, 561–583.

    CAS  PubMed  Google Scholar 

  • Emerson, D., and Moyer, C. (1997). Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63, 4784–4792.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ettwig, K.F., Zhu, B., Speth, D., Keltjens, J.T., Jetten, M.S.M., and Kartal, B. (2016). Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA 113, 12792–12796.

    CAS  PubMed  Google Scholar 

  • Glasser, N.R., Saunders, S.H., and Newman, D.K. (2017). The colorful world of extracellular electron shuttles. Annu Rev Microbiol 71, 731–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103, 11358–11363.

    CAS  PubMed  Google Scholar 

  • Gralnick, J.A., Vali, H., Lies, D.P., and Newman, D.K. (2006). Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci USA 103, 4669–4674.

    CAS  PubMed  Google Scholar 

  • Ha, P.T., Lindemann, S.R., Shi, L., Dohnalkova, A.C., Fredrickson, J.K., Madigan, M.T., and Beyenal, H. (2017). Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nat Commun 8, 13924.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes, D.E., Shrestha, P.M., Walker, D.J.F., Dang, Y., Nevin, K.P., Woodard, T.L., and Lovley, D.R. (2017). Metatranscriptomic evidence for direct interspecies electron transfer between geobacter and methanothrix species in methanogenic rice paddy soils. Appl Environ Microbiol 83.

    Google Scholar 

  • Ilbert, M., and Bonnefoy, V. (2013). Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta Bioenerg 1827, 161–175.

    CAS  Google Scholar 

  • Jiang, Z., Zhang, S., Klausen, L.H., Song, J., Li, Q., Wang, Z., Stokke, B.T., Huang, Y., Besenbacher, F., Nielsen, L.P., et al. (2018). In vitro singlecell dissection revealing the interior structure of cable bacteria. Proc Natl Acad Sci USA 115, 8517–8522.

    CAS  PubMed  Google Scholar 

  • Jiao, Y., and Newman, D.K. (2007). The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriol 189, 1765–1773.

    CAS  PubMed  Google Scholar 

  • Jiménez Otero, F., Chan, C.H., and Bond, D.R. (2018). Identification of different putative outer membrane electron conduits necessary for Fe (III) citrate, Fe(III) oxide, Mn(IV) oxide, or electrode reduction by Geobacter sulfurreducens. J Bacteriol 200.

    Google Scholar 

  • Kappler, A., and Bryce, C. (2017). Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ Microbiol 19, 842–846.

    PubMed  Google Scholar 

  • Kato, S., Hashimoto, K., and Watanabe, K. (2012a). Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14, 1646–1654.

    CAS  PubMed  Google Scholar 

  • Kato, S., Hashimoto, K., and Watanabe, K. (2012b). Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci USA 109, 10042–10046.

    CAS  PubMed  Google Scholar 

  • Larimer, F.W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M.L., Pelletier, D.A., Beatty, J.T., Lang, A.S., et al. (2004). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22, 55–61.

    CAS  PubMed  Google Scholar 

  • Levar, C.E., Chan, C.H., Mehta-Kolte, M.G., and Bond, D.R. (2014). An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. mBio 5, e02034.

    CAS  PubMed  Google Scholar 

  • Levar, C.E., Hoffman, C.L., Dunshee, A.J., Toner, B.M., and Bond, D.R. (2017). Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME J 11, 741–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Light, S.H., Su, L., Rivera-Lugo, R., Cornejo, J.A., Louie, A., Iavarone, A. T., Ajo-Franklin, C.M., and Portnoy, D.A. (2018). A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 562, 140–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Pearce, C.I., Liu, C., Wang, Z., Shi, L., Arenholz, E., and Rosso, K. M. (2013). Fe3–xTixO4 nanoparticles as tunable probes of microbial metal oxidation. J Am Chem Soc 135, 8896–8907.

    CAS  PubMed  Google Scholar 

  • Liu, J., Wang, Z., Belchik, S.M., Edwards, M.J., Liu, C., Kennedy, D.W., Merkley, E.D., Lipton, M.S., Butt, J.N., Richardson, D.J., et al. (2012). Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front Microbio 3.

    Google Scholar 

  • Liu, X., Shi, L., and Gu, J.D. (2018a). Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotech Adv 36, 1815–1827.

    CAS  Google Scholar 

  • Liu, X., Zhuo, S., Rensing, C., and Zhou, S. (2018b). Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species. ISME J 12, 2142–2151.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Fredrickson, J.K., Zachara, J.M., and Shi, L. (2015). Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front Microbiol 6.

    Google Scholar 

  • Liu, Y., Wang, Z., Liu, J., Levar, C., Edwards, M.J., Babauta, J.T., Kennedy, D.W., Shi, Z., Beyenal, H., Bond, D.R., et al. (2014). A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep 6, 776–785.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd, J.R., Leang, C., Hodges Myerson, A.L., Coppi, M.V., Cuifo, S., Methe, B., Sandler, S.J., and Lovley, D.R. (2003). Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J 369, 153–161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley, D.R. (2017a). Happy together: microbial communities that hook up to swap electrons. ISME J 11, 327–336.

    CAS  PubMed  Google Scholar 

  • Lovley, D.R. (2017b). Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol 71, 643–664.

    CAS  PubMed  Google Scholar 

  • Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., and Woodward, J.C. (1996). Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448.

    CAS  Google Scholar 

  • Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J. P., Gorby, Y.A., and Goodwin, S. (1993). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159, 336–344.

    CAS  PubMed  Google Scholar 

  • Lovley, D.R., and Phillips, E.J. (1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley, D.R., Stolz, J.F., Nord, G.L., and Phillips, E.J.P. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252–254.

    CAS  Google Scholar 

  • Malkin, S.Y., Rao, A.M.F., Seitaj, D., Vasquez-Cardenas, D., Zetsche, E. M., Hidalgo-Martinez, S., Boschker, H.T.S., and Meysman, F.J.R. (2014). Natural occurrence of microbial sulphur oxidation by longrange electron transport in the seafloor. ISME J 8, 1843–1854.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGlynn, S.E., Chadwick, G.L., Kempes, C.P., and Orphan, V.J. (2015). Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535.

    CAS  PubMed  Google Scholar 

  • Melton, E.D., Swanner, E.D., Behrens, S., Schmidt, C., and Kappler, A. (2014). The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Micro 12, 797–808.

    CAS  Google Scholar 

  • Moran, J.J., House, C.H., Freeman, K.H., and Ferry, J.G. (2005). Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea 1, 303–309.

    CAS  PubMed  Google Scholar 

  • Morgado, L., Bruix, M., Pessanha, M., Londer, Y.Y., and Salgueiro, C.A. (2010). Thermodynamic characterization of a triheme cytochrome family from Geobacter sulfurreducens reveals mechanistic and functional diversity. Biophys J 99, 293–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers, C.R., and Nealson, K.H. (1988). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1321.

    CAS  Google Scholar 

  • Nayak, D.D., and Metcalf, W.W. (2017). Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. Proc Natl Acad Sci USA 114, 2976–2981.

    CAS  PubMed  Google Scholar 

  • Otte, J.M., Harter, J., Laufer, K., Blackwell, N., Straub, D., Kappler, A., and Kleindienst, S. (2018). The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environ Microbiol 20, 2483–2499.

    CAS  PubMed  Google Scholar 

  • Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R.L., Kjeldsen, K.U., Schreiber, L., Gorby, Y.A., El-Naggar, M.Y., et al. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218–221.

    CAS  PubMed  Google Scholar 

  • Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., et al. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci USA 111, 12883–12888.

    CAS  PubMed  Google Scholar 

  • Pirbadian, S., and El-Naggar, M.Y. (2012). Multistep hopping and extracellular charge transfer in microbial redox chains. Phys Chem Chem Phys 14, 13802–13808.

    CAS  PubMed  Google Scholar 

  • Reguera, G. (2018). Biological electron transport goes the extra mile. Proc Natl Acad Sci USA 115, 5632–5634.

    CAS  PubMed  Google Scholar 

  • Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R. (2005). Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101.

    CAS  Google Scholar 

  • Richardson, D.J., Butt, J.N., Fredrickson, J.K., Zachara, J.M., Shi, L., Edwards, M.J., White, G., Baiden, N., Gates, A.J., Marritt, S.J., et al. (2012). The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol Microbiol 85, 201–212.

    CAS  PubMed  Google Scholar 

  • Richter, K., Schicklberger, M., and Gescher, J. (2012). Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78, 913–921.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Risgaard-Petersen, N., Kristiansen, M., Frederiksen, R.B., Dittmer, A.L., Bjerg, J.T., Trojan, D., Schreiber, L., Damgaard, L.R., Schramm, A., and Nielsen, L.P. (2015). Cable bacteria in freshwater sediments. Appl Environ Microbiol 81, 6003–6011.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roden, E.E., Kappler, A., Bauer, I., Jiang, J., Paul, A., Stoesser, R., Konishi, H., and Xu, H. (2010). Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat Geosci 3, 417–421.

    CAS  Google Scholar 

  • Roden, E.E., McBeth, J.M., Blöthe, M., Percak-Dennett, E.M., Fleming, E. J., Holyoke, R.R., Luther, G.W., Emerson, D., and Schieber, J. (2012). The microbial ferrous wheel in a neutral pH groundwater seep. Front Microbio 3, 172.

    Google Scholar 

  • Rotaru, A.E., Calabrese, F., Stryhanyuk, H., Musat, F., Shrestha, P.M., Weber, H.S., Snoeyenbos-West, O.L.O., Hall, P.O.J., Richnow, H.H., Musat, N., et al. (2018). Conductive particles enable syntrophic acetate oxidation between Geobacter and Methanosarcina from coastal sediments. mBio 9.

    Google Scholar 

  • Rotaru, A.E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K.P., and Lovley, D.R. (2014a). Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80, 4599–4605.

    PubMed  PubMed Central  Google Scholar 

  • Rotaru, A.E., Shrestha, P.M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., Nevin, K.P., and Lovley, D.R. (2014b). A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7, 408–415.

    CAS  Google Scholar 

  • Scheller, S., Yu, H., Chadwick, G.L., McGlynn, S.E., and Orphan, V.J. (2016). Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707.

    CAS  PubMed  Google Scholar 

  • Seitaj, D., Schauer, R., Sulu-Gambari, F., Hidalgo-Martinez, S., Malkin, S. Y., Burdorf, L.D.W., Slomp, C.P., and Meysman, F.J.R. (2015). Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc Natl Acad Sci USA 112, 13278–13283.

    CAS  PubMed  Google Scholar 

  • Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.Q., and Fredrickson, J.K. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Micro 14, 651–662.

    CAS  Google Scholar 

  • Shi, L., Fredrickson, J.K., and Zachara, J.M. (2014). Genomic analyses of bacterial porin-cytochrome gene clusters. Front Microbiol 5.

    Google Scholar 

  • Shi, L., Rosso, K.M., Zachara, J.M., and Fredrickson, J.K. (2012). Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. Biochm Soc Trans 40, 1261–1267.

    CAS  Google Scholar 

  • Shi, L., Squier, T.C., Zachara, J.M., and Fredrickson, J.K. (2007). Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65, 12–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skennerton, C.T., Chourey, K., Iyer, R., Hettich, R.L., Tyson, G.W., and Orphan, V.J. (2017). Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio 8.

    Google Scholar 

  • Soo, V.W.C., McAnulty, M.J., Tripathi, A., Zhu, F., Zhang, L., Hatzakis, E., Smith, P.B., Agrawal, S., Nazem-Bokaee, H., Gopalakrishnan, S., et al. (2016). Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb Cell Fact 15, 11.

    PubMed  PubMed Central  Google Scholar 

  • Subramanian, P., Pirbadian, S., El-Naggar, M.Y., and Jensen, G.J. (2018). Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proc Natl Acad Sci USA 115, e3246–E3255.

    CAS  PubMed  Google Scholar 

  • Sulu-Gambari, F., Seitaj, D., Meysman, F.J.R., Schauer, R., Polerecky, L., and Slomp, C.P. (2016). Cable bacteria control iron-phosphorus dynamics in sediments of a coastal hypoxic basin. Environ Sci Technol 50, 1227–1233.

    CAS  PubMed  Google Scholar 

  • Summers, Z.M., Fogarty, H.E., Leang, C., Franks, A.E., Malvankar, N.S., and Lovley, D.R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415.

    CAS  PubMed  Google Scholar 

  • Thauer, R.K. (2011). Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14, 292–299.

    CAS  PubMed  Google Scholar 

  • Trojan, D., Schreiber, L., Bjerg, J.T., Bøggild, A., Yang, T., Kjeldsen, K.U., and Schramm, A. (2016). A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema. Systatic Appl Microbiol 39, 297–306.

    Google Scholar 

  • Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A., and Holmes, D.S. (2008). Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9, 597.

    PubMed  PubMed Central  Google Scholar 

  • Weber, K.A., Achenbach, L.A., and Coates, J.D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4, 752–764.

    CAS  PubMed  Google Scholar 

  • Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H.E., and Boetius, A. (2015). Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590.

    CAS  PubMed  Google Scholar 

  • White, G.F., Edwards, M.J., Gomez-Perez, L., Richardson, D.J., Butt, J.N., and Clarke, T.A. (2016). Mechanisms of bacterial extracellular electron exchange. Adv Microb Physiol 68, 87–138.

    CAS  PubMed  Google Scholar 

  • Xu, S., Barrozo, A., Tender, L.M., Krylov, A.I., and El-Naggar, M.Y. (2018). Multiheme cytochrome mediated redox conduction through Shewanella oneidensis MR-1 cells. J Am Chem Soc 140, 10085–10089.

    CAS  PubMed  Google Scholar 

  • Yan, Z., Joshi, P., Gorski, C.A., and Ferry, J.G. (2018). A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. Nat Commun 9, 1642.

    PubMed  PubMed Central  Google Scholar 

  • Zacharoff, L., Chan, C.H., and Bond, D.R. (2015). Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107, 7–13.

    PubMed  Google Scholar 

  • Zhao, L., Dong, H., Kukkadapu, R.K., Zeng, Q., Edelmann, R.E., Pentrák, M., and Agrawal, A. (2015). Biological redox cycling of iron in nontronite and its potential application in nitrate removal. Environ Sci Technol 49, 5493–5501.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC91851211; 41772363), One Hundred Talents Program of Hubei Province and China University of Geosciences-Wuhan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Shi.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Shi, M. & Shi, L. Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements. Sci. China Life Sci. 62, 1275–1286 (2019). https://doi.org/10.1007/s11427-018-9464-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9464-3

Keywords

Navigation