Skip to main content
Log in

Neutrophil programming dynamics and its disease relevance

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alder, M.N., Opoka, A.M., Lahni, P., Hildeman, D.A., and Wong, H.R. (2016). Olfactomedin-4 is a candidate marker for a pathogenic neutrophil subset in septic shock. Crit Care Med 45, e426–e432.

    Article  CAS  Google Scholar 

  • Amirbeagi, F., Thulin, P., Pullerits, R., Pedersen, B., Andersson, B.A., Dahlgren, C., Welin, A., and Bylund, J. (2015). Olfactomedin-4 autoantibodies give unusual c-ANCA staining patterns with reactivity to a subpopulation of neutrophils. J Leukocyte Biol 97, 181–189.

    Article  PubMed  CAS  Google Scholar 

  • Amulic, B., Cazalet, C., Hayes, G.L., Metzler, K.D., and Zychlinsky, A. (2012). Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30, 459–489.

    Article  CAS  PubMed  Google Scholar 

  • Andzinski, L., Kasnitz, N., Stahnke, S., Wu, C.F., Gereke, M., von Köckritz-Blickwede, M., Schilling, B., Brandau, S., Weiss, S., and Jablonska, J. (2016). Type IIFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer 138, 1982–1993.

    Article  CAS  PubMed  Google Scholar 

  • Andzinski, L., Wu, C.F., Lienenklaus, S., Kroger, A., Weiss, S., and Jablonska, J. (2015). Delayed apoptosis of tumor associated neutrophils in the absence of endogenous IFN-beta. Int J Cancer 136, 572–583.

    CAS  PubMed  Google Scholar 

  • Bai, J., Tang, L., Lomas-Neira, J., Chen, Y., McLeish, K.R., Uriarte, S.M., Chung, C.S., and Ayala, A. (2015). TAT-SNAP-23 treatment inhibits the priming of neutrophil functions contributing to shock and/or sepsisinduced extra-pulmonary acute lung injury. Innate Immun 21, 42–54.

    Article  PubMed  CAS  Google Scholar 

  • Baker, B., Geng, S., Chen, K., Diao, N., Yuan, R., Xu, X., Dougherty, S., Stephenson, C., Xiong, H., Chu, H.W., and Li, L. (2015). Alteration of lysosome fusion and low-grade inflammation mediated by super-lowdose endotoxin. J Biol Chem 290, 6670–6678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcellos-Hoff, M.H., and Akhurst, R.J. (2009). Transforming growth factor-β in breast cancer: too much, too late. Breast Cancer Res 11, 202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berton, G., Zeni, L., Cassatella, M.A., and Rossi, F. (1986). Gamma interferon is able to enhance the oxidative metabolism of human neutrophils. Biochem Biophys Res Commun 138, 1276–1282.

    Article  CAS  PubMed  Google Scholar 

  • Binder, R., Kress, A., Kan, G., Herrmann, K., and Kirschfink, M. (1999). Neutrophil priming by cytokines and vitamin D binding protein (Gcglobulin): impact on C5a-mediated chemotaxis, degranulation and respiratory burst. Mol Immunol 36, 885–892.

    Article  CAS  PubMed  Google Scholar 

  • Bouin, A.P., Grandvaux, N., Vignais, P.V., and Fuchs, A. (1998). p40(phox) is phosphorylated on threonine 154 and serine 315 during activation of the phagocyte NADPH oxidase. Implication of a protein kinase c-type kinase in the phosphorylation process. J Biol Chem 273, 30097–30103.

    Article  CAS  PubMed  Google Scholar 

  • Boussetta, T., Gougerot-Pocidalo, M.A., Hayem, G., Ciappelloni, S., Raad, H., Arabi Derkawi, R., Bournier, O., Kroviarski, Y., Zhou, X.Z., Malter, J.S., Lu, P.K., Bartegi, A., Dang, P.M.C., and El-Benna, J. (2010). The prolyl isomerase Pin1 acts as a novel molecular switch for TNF-alphainduced priming of the NADPH oxidase in human neutrophils. Blood 116, 5795–5802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, G.E., Stewart, M.Q., Bissonnette, S.A., Elia, A.E.H., Wilker, E., and Yaffe, M.B. (2004). Distinct ligand-dependent roles for p38 MAPK in priming and activation of the neutrophil NADPH oxidase. J Biol Chem 279, 27059–27068.

    Article  CAS  PubMed  Google Scholar 

  • Brzezinska, A.A., Johnson, J.L., Munafo, D.B., Crozat, K., Beutler, B., Kiosses, W.B., Ellis, B.A., and Catz, S.D. (2008). The Rab27a effectors JFC1/Slp1 and Munc13-4 regulate exocytosis of neutrophil granules. Traffic 9, 2151–2164.

    Article  CAS  PubMed  Google Scholar 

  • Casanova-Acebes, M., Pitaval, C., Weiss, L.A., Nombela-Arrieta, C., Chèvre, R., A-González, N., Kunisaki, Y., Zhang, D., van Rooijen, N., Silberstein, L.E., Weber, C., Nagasawa, T., Frenette, P.S., Castrillo, A., and Hidalgo, A. (2013). Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catz, S.D. (2014). The role of Rab27a in the regulation of neutrophil function. Cell Microbiol 16, 1301–1310.

    Article  CAS  PubMed  Google Scholar 

  • Chen, K., Geng, S., Yuan, R., Diao, N., Upchurch, Z., and Li, L. (2015). Super-low dose endotoxin pre-conditioning exacerbates sepsis mortality. EBioMedicine 2, 324–333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Condliffe, A.M., Kitchen, E., and Chilvers, E.R. (1998). Neutrophil priming: pathophysiological consequences and underlying mechanisms. Clin Sci 94, 461–471.

    Article  CAS  PubMed  Google Scholar 

  • Cross, A., Bucknall, R.C., Cassatella, M.A., Edwards, S.W., and Moots, R.J. (2003). Synovial fluid neutrophils transcribe and express class II major histocompatibility complex molecules in rheumatoid arthritis. Arthritis Rheum 48, 2796–2806.

    Article  CAS  PubMed  Google Scholar 

  • Crusz, S.M., and Balkwill, F.R. (2015). Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12, 584–596.

    Article  CAS  PubMed  Google Scholar 

  • Cuartero, M.I., Ballesteros, I., Moraga, A., Nombela, F., Vivancos, J., Hamilton, J.A., Corbí, Á.L., Lizasoain, I., and Moro, M.A. (2013). N2 neutrophils, novel players in brain inflammation after stroke: modulation by the PPARγ agonist rosiglitazone. Stroke 44, 3498–3508.

    Article  CAS  PubMed  Google Scholar 

  • Dang, P.M.C., Raad, H., Derkawi, R.A., Boussetta, T., Paclet, M.H., Belambri, S.A., Makni-Maalej, K., Kroviarski, Y., Morel, F., Gougerot-Pocidalo, M.A., and El-Benna, J. (2011). The NADPH oxidase cytosolic component p67phox is constitutively phosphorylated in human neutrophils: regulation by a protein tyrosine kinase, MEK1/2 and phosphatases 1/2A. Biochem Pharmacol 82, 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  • Davey, M.S., Morgan, M.P., Liuzzi, A.R., Tyler, C.J., Khan, M.W.A., Szakmany, T., Hall, J.E., Moser, B., and Eberl, M. (2014). Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J Immunol 193, 3704–3716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demers, M., Wong, S.L., Martinod, K., Gallant, M., Cabral, J.E., Wang, Y., and Wagner, D.D. (2016). Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 5, e1134073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng, H., Maitra, U., Morris, M., and Li, L. (2013). Molecular mechanism responsible for the priming of macrophage activation. J Biol Chem 288, 3897–3906.

    Article  CAS  PubMed  Google Scholar 

  • Diakos, C.I., Charles, K.A., McMillan, D.C., and Clarke, S.J. (2014). Cancer-related inflammation and treatment effectiveness. Lancet Oncol 15, e493–e503.

    Article  PubMed  Google Scholar 

  • Diao, N., Zhang, Y., Chen, K., Yuan, R., Lee, C., Geng, S., Kowalski, E., Guo, W., Xiong, H., Li, M., and Li, L. (2016). Deficiency in Toll-interacting protein (Tollip) skews inflamed yet incompetent innate leukocytes in vivo during DSS-induced septic colitis. Sci Rep 6, 34672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Benna, J., Hurtado-Nedelec, M., Marzaioli, V., Marie, J.C., Gougerot-Pocidalo, M.A., and Dang, P.M.C. (2016). Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev 273, 180–193.

    Article  CAS  PubMed  Google Scholar 

  • Eun, J.C., Moore, E.E., Banerjee, A., Kelher, M.R., Khan, S.Y., Elzi, D.J., McLaughlin, N.J.D., and Silliman, C.C. (2011). Leukotriene B4 and its metabolites prime the neutrophil oxidase and induce proinflammatory activation of human pulmonary microvascular endothelial cells. Shock 35, 240–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forehand, J.R., Pabst, M.J., Phillips, W.A., and Johnston Jr, R.B. (1989). Lipopolysaccharide priming of human neutrophils for an enhanced respiratory burst. Role of intracellular free calcium. J Clin Invest 83, 74–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridlender, Z.G., and Albelda, S.M. (2012). Tumor-associated neutrophils: friend or foe? Carcinogenesis 33, 949–955.

    Article  CAS  PubMed  Google Scholar 

  • Fridlender, Z.G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., Worthen, G.S., and Albelda, S.M. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs, T., Püellmann, K., Scharfenstein, O., Eichner, R., Stobe, E., Becker, A., Pechlivanidou, I., Kzhyshkowska, J., Gratchev, A., Ganser, A., Neumaier, M., Beham, A.W., and Kaminski, W.E. (2012). The neutrophil recombinatorial TCR-like immune receptor is expressed across the entire human life span but repertoire diversity declines in old age. Biochem Biophys Res Commun 419, 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Galdiero, M.R., Bonavita, E., Barajon, I., Garlanda, C., Mantovani, A., and Jaillon, S. (2013). Tumor associated macrophages and neutrophils in cancer. Immunobiology 218, 1402–1410.

    Article  CAS  PubMed  Google Scholar 

  • Geng, S., Matsushima, H., Okamoto, T., Yao, Y., Lu, R., Page, K., Blumenthal, R.M., Ward, N.L., Miyazaki, T., and Takashima, A. (2013a). Emergence, origin, and function of neutrophil-dendritic cell hybrids in experimentally induced inflammatory lesions in mice. Blood 121, 1690–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng, S., Matsushima, H., Okamoto, T., Yao, Y., Lu, R., and Takashima, A. (2013b). Reciprocal regulation of development of neutrophil-dendritic cell hybrids in mice by IL-4 and interferon-gamma. PLoS ONE 8, e82929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gosselin, E.J., Wardwell, K., Rigby, W.F., and Guyre, P.M. (1993). Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/ macrophage colony-stimulating factor, IFN-gamma, and IL-3. J Immunol 151, 1482–1490.

    CAS  PubMed  Google Scholar 

  • Granot, Z., Henke, E., Comen, E.A., King, T.A., Norton, L., and Benezra, R. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20, 300–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory, A.D., and Houghton, A.M. (2011). Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res 71, 2411–2416.

    Article  CAS  PubMed  Google Scholar 

  • Groemping, Y., and Rittinger, K. (2005). Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 386, 401–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, H., Diao, N., Yuan, R., Chen, K., Geng, S., Li, M., and Li, L. (2016). Subclinical-dose endotoxin sustains low-grade inflammation and exacerbates steatohepatitis in high-fat diet-fed mice. J Immunol 196, 2300–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guthrie, L.A., McPhail, L.C., Henson, P.M., and Johnston, R.B., Jr. (1984). Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J Exp Med 160, 1656–1671.

    Article  CAS  PubMed  Google Scholar 

  • Hager, M., Cowland, J.B., and Borregaard, N. (2010). Neutrophil granules in health and disease. J Int Med 268, 25–34.

    CAS  Google Scholar 

  • Handley, M.T.W., Haynes, L.P., and Burgoyne, R.D. (2007). Differential dynamics of Rab3A and Rab27A on secretory granules. J Cell Sci 120, 973–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hänsch, G.M., Radsak, M., Wagner, C., Reis, B., Koch, A., Breitbart, A., and Andrassy, K. (1999). Expression of major histocompatibility class II antigens on polymorphonuclear neutrophils in patients with Wegener’s granulomatosis. Kidney Int 55, 1811–1818.

    Article  PubMed  Google Scholar 

  • Heuer, H.O., Letts, G., and Meade, C.J. (1990). Tumor necrosis factor (TNF) and endotoxin prime effects of PAF in vivo. J Lipid Mediat 2 Suppl, S101–S108.

    CAS  PubMed  Google Scholar 

  • Hurtado-Nedelec, M., Csillag-Grange, M.J., Boussetta, T., Belambri, S.A., Fay, M., Cassinat, B., Gougerot-Pocidalo, M.A., Dang, P.M.C., and El-Benna, J. (2013). Increased reactive oxygen species production and p47phox phosphorylation in neutrophils from myeloproliferative disorders patients with JAK2 (V617F) mutation. Haematologica 98, 1517–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iking-Konert, C., Csekö, C., Wagner, C., Stegmaier, S., Andrassy, K., and Hänsch, M.G. (2001a). Transdifferentiation of polymorphonuclear neutrophils: acquisition of CD83 and other functional characteristics of dendritic cells. J Mol Med 79, 464–474.

    Article  CAS  PubMed  Google Scholar 

  • Iking-Konert, C., Vogt, S., Radsak, M., Wagner, C., Hänsch, G.M., and Andrassy, K. (2001b). Polymorphonuclear neutrophils in Wegener’s granulomatosis acquire characteristics of antigen presenting cells. Kidney Int 60, 2247–2262.

    Article  CAS  PubMed  Google Scholar 

  • Imamura, T., Hikita, A., and Inoue, Y. (2012). The roles of TGF-β signaling in carcinogenesis and breast cancer metastasis. Breast Cancer 19, 118–124.

    Article  PubMed  Google Scholar 

  • Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S., and Weiss, S. (2010). Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest 120, 1151–1164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonska, J., Wu, C.F., Andzinski, L., Leschner, S., and Weiss, S. (2014). CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β. Int J Cancer 134, 1346–1358.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, J.L., Brzezinska, A.A., Tolmachova, T., Munafo, D.B., Ellis, B.A., Seabra, M.C., Hong, H., and Catz, S.D. (2010). Rab27a and Rab27b regulate neutrophil azurophilic granule exocytosis and NADPH oxidase activity by independent mechanisms. Traffic 11, 533–547.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, J.L., Hong, H., Monfregola, J., and Catz, S.D. (2011a). Increased survival and reduced neutrophil infiltration of the liver in Rab27a- but not Munc13-4-deficient mice in lipopolysaccharide-induced systemic inflammation. Infect Immun 79, 3607–3618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, J.L., Hong, H., Monfregola, J., Kiosses, W.B., and Catz, S.D. (2011b). Munc13-4 restricts motility of Rab27a-expressing vesicles to facilitate lipopolysaccharide-induced priming of exocytosis in neutrophils. J Biol Chem 286, 5647–5656.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, J.L., Monfregola, J., Napolitano, G., Kiosses, W.B., and Catz, S.D. (2012). Vesicular trafficking through cortical actin during exocytosis is regulated by the Rab27a effector JFC1/Slp1 and the RhoA-GTPase-activating protein Gem-interacting protein. Mol Biol Cell 23, 1902–1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi, A., and Cao, D. (2010). TGF-ß signaling, tumor microenvironment and tumor progression: the butterfly effect. Front Biosci 15, 180–194.

    Article  CAS  Google Scholar 

  • Kazzaz, N.M., Sule, G., and Knight, J.S. (2016). Intercellular interactions as regulators of NETosis. Front Immunol 7, 453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kelher, M.R., McLaughlin, N.J.D., Banerjee, A., Elzi, D.J., Gamboni, F., Khan, S.Y., Meng, X., Mitra, S., and Silliman, C.C. (2016). LysoPCs induce Hck- and PKCδ-mediated activation of PKCγ causing p47phox phosphorylation and membrane translocation in neutrophils. J Leukoc Biol 101, 261–273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khandpur, R., Carmona-Rivera, C., Vivekanandan-Giri, A., Gizinski, A., Yalavarthi, S., Knight, J.S., Friday, S., Li, S., Patel, R.M., Subramanian, V., Thompson, P., Chen, P., Fox, D.A., Pennathur, S., and Kaplan, M.J. (2013). NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 5, 178ra40–178ra40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhns, D.B., Wright, D.G., Nath, J., Kaplan, S.S., and Basford, R.E. (1988). ATP induces transient elevations of [Ca2+]i in human neutrophils and primes these cells for enhanced O2-generation. Lab Invest 58, 448–453.

    CAS  PubMed  Google Scholar 

  • Lewis, E.M., Sergeant, S., Ledford, B., Stull, N., Dinauer, M.C., and McPhail, L.C. (2010). Phosphorylation of p22phoxon threonine 147 enhances NADPH oxidase activity by promoting p47phox binding. J Biol Chem 285, 2959–2967.

    Article  CAS  PubMed  Google Scholar 

  • Liou, Y.C., Zhou, X.Z., and Lu, K.P. (2011). Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 36, 501–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Liu, Y., Wang, R., Li, C., Deng, C., and Rodgers, G.P. (2009). Olfactomedin 4 is essential for superoxide production and sensitizes oxidative stress-induced apoptosis in neutrophils. Blood 114, 1356–1356.

    Google Scholar 

  • Liu, W., Yan, M., Liu, Y., McLeish, K.R., Coleman, W.G., and Rodgers, G.P. (2012). Olfactomedin 4 inhibits cathepsin C-mediated protease activities, thereby modulating neutrophil killing of Staphylococcus aureus and Escherichia coli in mice. J Immunol 189, 2460–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Yan, M., Sugui, J.A., Li, H., Xu, C., Joo, J., Kwon-Chung, K.J., Coleman, W.G., and Rodgers, G.P. (2013). Olfm4 deletion enhances defense against Staphylococcus aureus in chronic granulomatous disease. J Clin Invest 123, 3751–3755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Y., Yabluchanskiy, A., Iyer, R.P., Cannon, P.L., Flynn, E.R., Jung, M., Henry, J., Cates, C.A., Deleon-Pennell, K.Y., and Lindsey, M.L. (2016). Temporal neutrophil polarization following myocardial infarction. Cardiovasc Res 110, 51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maitra, U., Deng, H., Glaros, T., Baker, B., Capelluto, D.G.S., Li, Z., and Li, L. (2012). Molecular mechanisms responsible for the selective and lowgrade induction of proinflammatory mediators in murine macrophages by lipopolysaccharide. J Immunol 189, 1014–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maitra, U., Gan, L., Chang, S., and Li, L. (2011). Low-dose endotoxin induces inflammation by selectively removing nuclear receptors and activating CCAAT/enhancer-binding protein δ. J Immunol 186, 4467–4473.

    Article  CAS  PubMed  Google Scholar 

  • Makni-Maalej, K., Boussetta, T., Hurtado-Nedelec, M., Belambri, S.A., Gougerot-Pocidalo, M.A., and El-Benna, J. (2012). The TLR7/8 agonist CL097 primes N-formyl-methionyl-leucyl-phenylalanine-stimulated NADPH oxidase activation in human neutrophils: critical role of p47phox phosphorylation and the proline isomerase Pin1. J Immunol 189, 4657–4665.

    Article  CAS  PubMed  Google Scholar 

  • Mantovani, A., Cassatella, M.A., Costantini, C., and Jaillon, S. (2011). Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11, 519–531.

    Article  CAS  PubMed  Google Scholar 

  • Matsushima, H., Geng, S., Lu, R., Okamoto, T., Yao, Y., Mayuzumi, N., Kotol, P.F., Chojnacki, B.J., Miyazaki, T., Gallo, R.L., and Takashima, A. (2013). Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood 121, 1677–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayadas, T.N., Cullere, X., and Lowell, C.A. (2014). The multifaceted functions of neutrophils. Annu Rev Pathol Mech Dis 9, 181–218.

    Article  CAS  Google Scholar 

  • McPhail, L.C., Clayton, C.C., and Snyderman, R. (1984). The NADPH oxidase of human polymorphonuclear leukocytes. Evidence for regulation by multiple signals. J Biol Chem 259, 5768–5775.

    CAS  PubMed  Google Scholar 

  • Mishalian, I., Bayuh, R., Levy, L., Zolotarov, L., Michaeli, J., and Fridlender, Z.G. (2013). Tumor-associated neutrophils (TAN) develop protumorigenic properties during tumor progression. Cancer Immunol Immunother 62, 1745–1756.

    Article  CAS  PubMed  Google Scholar 

  • Miyazono, K., Ehata, S., and Koinuma, D. (2012). Tumor-promoting functions of transforming growth factor-β in progression of cancer. Upsala J Med Sci 117, 143–152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mócsai, A. (2013). Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med 210, 1283–1299.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morris, M.C., Gilliam, E.A., Button, J., and Li, L. (2014). Dynamic modulation of innate immune response by varying dosages of lipopolysaccharide (LPS) in human monocytic cells. J Biol Chem 289, 21584–21590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mudzinski, S.P., Christian, T.P., Guo, T.L., Cirenza, E., Hazlett, K.R., and Gosselin, E.J. (1995). Expression of HLA-DR (major histocompatibility complex class II) on neutrophils from patients treated with granulocyte-macrophage colony-stimulating factor for mobilization of stem cells. Blood 86, 2452–2453.

    CAS  PubMed  Google Scholar 

  • Munafó, D.B., Johnson, J.L., Ellis, B.A., Rutschmann, S., Beutler, B., and Catz, S.D. (2007). Rab27a is a key component of the secretory machinery of azurophilic granules in granulocytes. Biochem J 402, 229–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nauseef, W.M., and Borregaard, N. (2014). Neutrophils at work. Nat Immunol 15, 602–611.

    Article  CAS  PubMed  Google Scholar 

  • Neely, C.J., Kartchner, L.B., Mendoza, A.E., Linz, B.M., Frelinger, J.A., Wolfgang, M.C., Maile, R., and Cairns, B.A. (2014). Flagellin treatment prevents increased susceptibility to systemic bacterial infection after injury by inhibiting anti-inflammatory IL-10+ IL-12− neutrophil polarization. PLoS ONE 9, e85623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oehler, L., Majdic, O., Pickl, W.F., Stöckl, J., Riedl, E., Drach, J., Rappersberger, K., Geissler, K., and Knapp, W. (1998). Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J Exp Med 187, 1019–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda, K., Neely, B.C., and David, C.S. (1979). Expression of H-2 and Ia antigens on mouse peritoneal neutrophils. Transplantation 28, 354–356.

    Article  CAS  PubMed  Google Scholar 

  • Okuda, K., Tani, K., Ishigatsubo, Y., Yokota, S., and David, C.S. (1980). Antigen-pulsed neutrophils bearing Ia antigens can induce T lymphocyte proliferative response to the syngeneic or semisyngeneic antigen-primed T lymphocytes. Transplantation 30, 368–372.

    Article  CAS  PubMed  Google Scholar 

  • Ostanin, D.V., Kurmaeva, E., Furr, K., Bao, R., Hoffman, J., Berney, S., and Grisham, M.B. (2012). Acquisition of antigen-presenting functions by neutrophils isolated from mice with chronic colitis. J Immunol 188, 1491–1502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccard, H., Muschel, R.J., and Opdenakker, G. (2012). On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol 82, 296–309.

    Article  CAS  PubMed  Google Scholar 

  • Puellmann, K., Kaminski, W.E., Vogel, M., Nebe, C.T., Schroeder, J., Wolf, H., and Beham, A.W. (2006). A variable immunoreceptor in a subpopulation of human neutrophils. Proc Natl Acad Sci USA 103, 14441–14446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raad, H., Paclet, M.H., Boussetta, T., Kroviarski, Y., Morel, F., Quinn, M.T., Gougerot-Pocidalo, M.A., Dang, P.M.C., and El-Benna, J. (2009). Regulation of the phagocyte NADPH oxidase activity: phosphorylation of gp91phox/NOX2 by protein kinase C enhances its diaphorase activity and binding to Rac2, p67phox, and p47phox. FASEB J 23, 1011–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramadass, M., and Catz, S.D. (2016). Molecular mechanisms regulating secretory organelles and endosomes in neutrophils and their implications for inflammation. Immunol Rev 273, 249–265.

    Article  CAS  PubMed  Google Scholar 

  • Ramadass, M., Johnson, J.L., and Catz, S.D. (2016). Rab27a regulates GM-CSF-dependent priming of neutrophil exocytosis. J Leukoc Biol 101, 693–702.

    Article  PubMed  Google Scholar 

  • Raposo, T.P., Beirão, B.C.B., Pang, L.Y., Queiroga, F.L., and Argyle, D.J. (2015). Inflammation and cancer: till death tears them apart. Vet J 205, 161–174.

    Article  CAS  PubMed  Google Scholar 

  • Sagiv, J.Y., Michaeli, J., Assi, S., Mishalian, I., Kisos, H., Levy, L., Damti, P., Lumbroso, D., Polyansky, L., Sionov, R.V., Ariel, A., Hovav, A.H., Henke, E., Fridlender, Z.G., and Granot, Z. (2015). Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 10, 562–573.

    Article  CAS  PubMed  Google Scholar 

  • Sheppard, F.R., Kelher, M.R., Moore, E.E., McLaughlin, N.J.D., Banerjee, A., and Silliman, C.C. (2005). Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukocyte Biol 78, 1025–1042.

    Article  CAS  PubMed  Google Scholar 

  • Sheshachalam, A., Srivastava, N., Mitchell, T., Lacy, P., and Eitzen, G. (2014). Granule protein processing and regulated secretion in neutrophils. Front Immunol 5, 448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shrestha, S., Noh, J.M., Kim, S.Y., Ham, H.Y., Kim, Y.J., Yun, Y.J., Kim, M.J., Kwon, M.S., Song, D.K., and Hong, C.W. (2016). Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype. Oncoimmunology 5, e1067744.

    Article  PubMed  CAS  Google Scholar 

  • Silliman, C.C., Elzi, D.J., Ambruso, D.R., Musters, R.J., Hamiel, C., Harbeck, R.J., Paterson, A.J., Bjornsen, A.J., Wyman, T.H., Kelher, M., England, K.M., McLaughlin-Malaxecheberria, N., Barnett, C.C., Aiboshi, J., and Bannerjee, A. (2003). Lysophosphatidylcholines prime the NADPH oxidase and stimulate multiple neutrophil functions through changes in cytosolic calcium. J Leukocyte Biol 73, 511–524.

    Article  CAS  PubMed  Google Scholar 

  • Silvestre-Roig, C., Hidalgo, A., and Soehnlein, O. (2016). Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood 127, 2173–2181.

    Article  CAS  PubMed  Google Scholar 

  • Singhal, S., Bhojnagarwala, P.S., O’Brien, S., Moon, E.K., Garfall, A.L., Rao, A.S., Quatromoni, J.G., Stephen, T.L., Litzky, L., Deshpande, C., Feldman, M.D., Hancock, W.W., Conejo-Garcia, J.R., Albelda, S.M., and Eruslanov, E.B. (2016). Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30, 120–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sionov, R.V., Assi, S., Gershkovitz, M., Sagiv, J.Y., Polyansky, L., Mishalian, I., Fridlender, Z.G., and Granot, Z. (2015). Isolation and characterization of neutrophils with anti-tumor properties. J Visual Exp 19, e52933.

    Google Scholar 

  • Smyth, M.J., Ngiow, S.F., Ribas, A., and Teng, M.W.L. (2016). Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol 13, 143–158.

    Article  CAS  PubMed  Google Scholar 

  • Sumimoto, H., Kage, Y., Nunoi, H., Sasaki, H., Nose, T., Fukumaki, Y., Ohno, M., Minakami, S., and Takeshige, K. (1994). Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci USA 91, 5345–5349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swain, S.D., Rohn, T.T., and Quinn, M.T. (2002). Neutrophil priming in host defense: role of oxidants as priming agents. Antioxid Redox Signal 4, 69–83.

    Article  CAS  PubMed  Google Scholar 

  • Tsuda, Y., Takahashi, H., Kobayashi, M., Hanafusa, T., Herndon, D.N., and Suzuki, F. (2004). Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity 21, 215–226.

    Article  CAS  PubMed  Google Scholar 

  • Uriarte, S.M., Rane, M.J., Luerman, G.C., Barati, M.T., Ward, R.A., Nauseef, W.M., and McLeish, K.R. (2011). Granule exocytosis contributes to priming and activation of the human neutrophil respiratory burst. J Immunol 187, 391–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uribe-Querol, E., and Rosales, C. (2015). Neutrophils in cancer: two sides of the same coin. J Immunol Res 2015, 1–21.

    Article  CAS  Google Scholar 

  • Weisbart, R.H., Golde, D.W., and Gasson, J.C. (1986). Biosynthetic human GM-CSF modulates the number and affinity of neutrophil f-Met-Leu-Phe receptors. J Immunol 137, 3584–3587.

    CAS  PubMed  Google Scholar 

  • Yamashiro, S., Wang, J.M., Yang, D., Gong, W.H., Kamohara, H., and Yoshimura, T. (2000). Expression of CCR6 and CD83 by cytokine-activated human neutrophils. Blood 96, 3958–3963.

    CAS  PubMed  Google Scholar 

  • Yan, B., Wei, J.J., Yuan, Y., Sun, R., Li, D., Luo, J., Liao, S.J., Zhou, Y.H., Shu, Y., Wang, Q., Zhang, G.M., and Feng, Z.H. (2013). IL-6 cooperates with G-CSF to induce protumor function of neutrophils in bone marrow by enhancing STAT3 activation. J Immunol 190, 5882–5893.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Pang, Y., and Moses, H.L. (2010). TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31, 220–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, R., Geng, S., and Li, L. (2016). Molecular mechanisms that underlie the dynamic adaptation of innate monocyte memory to varying stimulant strength of TLR ligands. Front Immunol 7, 497.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, R., and Li, L. (2016). Dynamic modulation of innate immunity programming and memory. Sci China Life Sci 59, 38–43.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D., Chen, G., Manwani, D., Mortha, A., Xu, C., Faith, J.J., Burk, R.D., Kunisaki, Y., Jang, J.E., Scheiermann, C., Merad, M., and Frenette, P.S. (2015). Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, T., Geng, S. & Li, L. Neutrophil programming dynamics and its disease relevance. Sci. China Life Sci. 60, 1168–1177 (2017). https://doi.org/10.1007/s11427-017-9145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9145-x

Keywords

Navigation