Skip to main content
Log in

Interkingdom signaling in plant-microbe interactions

  • Review
  • THEMATIC ISSUE: Biotic information and pest control
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The widespread communications between prokaryotes and eukaryotes via signaling molecules are believed to affect gene expression in both partners. During the communication process, the contacted organisms produce and release small molecules that establish communication channels between two kingdoms—this procedure is known as interkingdom signaling. Interkingdom communications are widespread between pathogenic or beneficial bacteria and their host plants, with diversified outcomes depending on the specific chemical-triggered signaling pathways. Deciphering the signals or language of this interkingdom communication and uncovering the underlying mechanisms are major current challenges in this field. It is evident that diverse signaling molecules can be produced or derived from bacteria and plants, and researchers have sought to identify these signals and explore the mechanisms of the signaling pathways. The results of such studies will lead to the development of strategies to improve plant disease resistance through controlling interkingdom signals, rather than directly killing the pathogenic bacteria. Also, the identification of signals produced by beneficial bacteria will be useful for agricultural applications. In this review, we summarize the recent progress of cross-kingdom interactions between plant and bacteria, and how LuxR-family transcription factors in plant associated bacterial quorum sensing system are involved in the interkingdom signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adonizio, A., Kong, K.F., and Mathee, K. (2008). Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 52, 198–203.

    Article  CAS  PubMed  Google Scholar 

  • Adonizio, A.L., Downum, K., Bennett, B.C., and Mathee, K. (2006). Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol 105, 427–435.

    Article  PubMed  Google Scholar 

  • Ahmer, B. M. M., van Reeuwijk, J., Timmers, C. D., Valentine, P. J. and Heffron, F. (1998). Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J Bacteriol 180, 1185–1193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, M.O., Alegria, M.C., Guzzo, C.R., Docena, C., Pareda Rosa, M.C., Ramos, C.H.I., and Farah, C.S. (2006). The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol Microbiol 62, 537–551.

    Article  CAS  PubMed  Google Scholar 

  • Annapoorani, A., Umamageswaran, V., Parameswari, R., Pandian, S.K., and Ravi, A.V. (2012). Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa. J Comput Aided Mol Des 26, 1067–1077.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Bai, X., Todd, C.D., Desikan, R., Yang, Y., and Hu, X. (2012). N-3-oxo-decanoyl-L-homoserine-lactone activates auxin-induced adventitious root formation via hydrogen peroxide- and nitric oxide-dependent cyclic GMP signaling in mung bean. Plant Physiol 158, 725–736.

    Article  CAS  PubMed  Google Scholar 

  • Bais, H.P., Walker, T.S., Schweizer, H.P., and Vivanco, J.M. (2002). Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40, 983–995.

    Article  CAS  Google Scholar 

  • Barber, C.E., Tang, J.L., Feng, J.X., Pan, M.Q., Wilson, T.J.G., Slater, H., Dow, J.M., Williams, P., and Daniels, M.J. (1997). A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24, 555–566.

    Article  CAS  PubMed  Google Scholar 

  • Barth, C., Jakubczyk, D., Kubas, A., Anastassacos, F., Brenner-Weiss, G., Fink, K., Schepers, U., Bräse, S., and Koelsch, P. (2012). Interkingdom signaling: integration, conformation, and orientation of N-Acyl-L-homoserine lactones in supported lipid bilayers. Langmuir 28, 8456–8462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer, W.D., and Mathesius, U. (2004). Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7, 429–433.

    Article  CAS  PubMed  Google Scholar 

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The protein data bank. Nucleic Acids Res 28, 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi, H., Yu, Y., Dong, H., Wang, H., and Cronan, J.E. (2014). Xanthomonas campestris RpfB is a fatty Acyl-CoA ligase required to counteract the thioesterase activity of the RpfF diffusible signal factor (DSF) synthase. Mol Microbiol 93, 262–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt, T., Jensen, P.Ø., Rasmussen, T.B., Christophersen, L., Calum, H., Hentzer, M., Hougen, H.P., Rygaard, J., Moser, C., Eberl, L., Høiby, N., and Givskov, M. (2005). Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151, 3873–3880.

    Article  CAS  PubMed  Google Scholar 

  • Boon, C., Deng, Y., Wang, L.H., He, Y., Xu, J.L., Fan, Y., Pan, S.Q., and Zhang, L.H. (2008). A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J 2, 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Braun, A.C. (1958). A Physiological basis for autonomous growth of the crown-gall tumor cell. Proc Natl Acad Sci USA 44, 344–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brencic, A., and Winans, S.C. (2005). Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69, 155–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatnaparat, T., Prathuangwong, S., Ionescu, M., and Lindow, S.E. (2012). XagR, a LuxR homolog, contributes to the virulence of Xanthomonas axonopodis pv. glycines to Soybean. Mol Plant Microbe Interact 25, 1104–1117.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, S., Newman, K.L., and Lindow, S.E. (2008). Cell-to-cell signaling in Xylella fastidiosa suppresses movement and xylem vessel colonization in grape. Mol Plant Microbe Interact 21, 1309–1315.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, Q.H., Grove, T.L., Booker, S.J., and Greenberg, E.P. (2013). A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases. Proc Natl Acad Sci USA 110, 13815–13820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clinton, A., and Rumbaugh, K.P. (2016). Interspecies and interkingdom signaling via quorum signals. Isr J Chem 56, 265–272.

    Article  CAS  Google Scholar 

  • Corral-Lugo, A., Daddaoua, A., Ortega, A., Espinosa-Urgel, M., and Krell, T. (2016). Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal 9, ra1–ra1.

    Article  PubMed  CAS  Google Scholar 

  • Covaceuszach, S., Degrassi, G., Venturi, V., and Lamba, D. (2013). Structural insights into a novel interkingdom signaling circuit by cartography of the ligand-binding sites of the homologous quorum sensing LuxRfamily. Int J Mol Sci 14, 20578–20596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniels, R., De Vos, D.E., Desair, J., Raedschelders, G., Luyten, E., Rosemeyer, V., Verreth, C., Schoeters, E., Vanderleyden, J., and Michiels, J. (2002). The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277, 462–468.

    Article  CAS  PubMed  Google Scholar 

  • Davies, D.G., and Marques, C.N.H. (2009). A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191, 1393–1403.

    Article  CAS  PubMed  Google Scholar 

  • de Rossi, B.P., García, C., Alcaraz, E., and Franco, M. (2014). Stenotrophomonas maltophilia interferes via the DSF-mediated quorum sensing system with Candida albicans filamentation and its planktonic and biofilm modes of growth. Rev Argent Microbiol 46, 288–297.

    PubMed  Google Scholar 

  • De Vleesschauwer, D. and Hofte, M. (2009). Rhizobacteria-induced systemic resistance. Plant Innate Immunity 51, 223–281.

    Google Scholar 

  • Degrassi, G., Devescovi, G., Solis, R., Steindler, L., and Venturi, V. (2007). Oryza sativa rice plants contain molecules that activate different quorumsensing N-acyl homoserine lactone biosensors and are sensitive to the specific AiiA lactonase. FEMS Microbiol Lett 269, 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y., Liu, X., Wu, J., Lee, J., Chen, S., Cheng, Y., Zhang, C., and Zhang, L.H. (2015). The host plant metabolite glucose is the precursor of diffusible signal factor (DSF) family signals in Xanthomonas campestris. Appl Environ Microbiol 81, 2861–2868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, Y., Wu, J., Tao, F., and Zhang, L.H. (2011). Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem Rev 111, 160–173.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y., Wu, J., Eberl, L., and Zhang, L.H. (2010). Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Appl Environ Microbiol 76, 4675–4683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diller, D.J., and Merz, K.M. (2001). High throughput docking for library design and library prioritization. Proteins 43, 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y.H., Wang, L.H., Xu, J.L., Zhang, H.B., Zhang, X.F., and Zhang, L.H. (2001). Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411, 813–817.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y.H., Xu, J.L., Li, X.Z., and Zhang, L.H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97, 3526–3531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhard, A., Burlingame, A.L., Eberhard, C., Kenyon, G.L., Nealson, K.H., and Oppenheimer, N.J. (1981). Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444–2449.

    Article  CAS  PubMed  Google Scholar 

  • Eberl, L. (1999). N-acyl homoserinelactone-mediated gene regulation in Gram-negative bacteria. Syst Appl Microbiol 22, 493–506.

    Article  CAS  PubMed  Google Scholar 

  • Engebrecht, J., Nealson, K., and Silverman, M. (1983). Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32, 773–781.

    Article  CAS  PubMed  Google Scholar 

  • Eswar, N., John, B., Mirkovic, N., Fiser, A., Ilyin, V.A., Pieper, U., Stuart, A.C., Marti-Renom, M.A., Madhusudhan, M.S., Yerkovich, B., and Sali, A. (2003). Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 31, 3375–3380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferluga, S., Bigirimana, J., Höfte, M., and Venturi, V. (2007). A LuxR homologue of Xanthomonas oryzae pv. oryzae is required for optimal rice virulence. Mol Plant Pathol 8, 529–538.

    Article  CAS  PubMed  Google Scholar 

  • Ferluga, S., and Venturi, V. (2009). OryR is a LuxR-family protein involved in interkingdom signaling between pathogenic Xanthomonas oryzae pv. oryzae and rice. J Bacteriol 191, 890–897.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fuentes, N., Madrid-Aliste, C.J., Rai, B.K., Fajardo, J.E., and Fiser, A. (2007). M4T: a comparative protein structure modeling server. Nucleic Acids Res 35, W363–W368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fouhy, Y., Scanlon, K., Schouest, K., Spillane, C., Crossman, L., Avison, M.B., Ryan, R.P., and Dow, J.M. (2007). Diffusible signal factor-dependent cell-cell signaling and virulence in the nosocomial pathogen Stenotrophomonas maltophilia. J Bacteriol 189, 4964–4968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., Shaw, D.E., Francis, P., and Shenkin, P.S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47, 1739–1749.

    CAS  PubMed  Google Scholar 

  • Fuqua, C. (2006). The QscR quorum-sensing regulon of Pseudomonas aeruginosa: an orphan claims its identity. J Bacteriol 188, 3169–3171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuqua, C., Parsek, M.R., and Greenberg, E.P. (2001). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35, 439–468.

    Article  CAS  PubMed  Google Scholar 

  • Fuqua, W.C., Winans, S.C., and Greenberg, E.P. (1994). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176, 269–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, M., Teplitski, M., Robinson, J.B., and Bauer, W.D. (2003). Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16, 827–834.

    Article  CAS  PubMed  Google Scholar 

  • Geske, G.D., O’Neill, J.C., and Blackwell, H.E. (2008). Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chem Soc Rev 37, 1432–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González, J.F., Myers, M.P., and Venturi, V. (2013). The inter-kingdom solo OryR regulator of Xanthomonas oryzae is important for motility. Mol Plant Pathol 14, 211–221.

    Article  PubMed  CAS  Google Scholar 

  • González, J.F., and Venturi, V. (2013). A novel widespread interkingdom signaling circuit. Trends Plant Sci 18, 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Götz-Rösch, C., Sieper, T., Fekete, A., Schmitt-Kopplin, P., Hartmann, A., and Schröder, P. (2015). Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean. Front Plant Sci 6, 205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Götz, C., Fekete, A., Gebefuegi, I., Forczek, S.T., Fuksová, K., Li, X., Englmann, M., Gryndler, M., Hartmann, A., Matucha, M., Schmitt-Kopplin, P., and Schröder, P. (2007). Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389, 1447–1457.

    Article  PubMed  CAS  Google Scholar 

  • Gudesblat, G.E., Torres, P.S., and Vojnov, A.A. (2009). Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol 149, 1017–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillon, S., Trémouillaux-Guiller, J., Pati, P.K., Rideau, M., and Gantet, P. (2006). Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9, 341–346.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, A., Rothballer, M., Hense, B.A., and SchrÃder, P. (2014). Bacterial quorum sensing compounds are important modulators of microbeplant interactions. Front Plant Sci 5, 131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haudecoeur, E., Tannières, M., Cirou, A., Raffoux, A., Dessaux, Y., and Faure, D. (2009). Different regulation and roles of lactonases AiiB and AttM in Agrobacterium tumefaciens C58. Mol Plant Microbe Interact 22, 529–537.

    Article  CAS  PubMed  Google Scholar 

  • He, Y.W., Wu, J., Cha, J.S., and Zhang, L.H. (2010). Rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae produces multiple DSF-family signals in regulation of virulence factor production. BMC Microbiol 10, 187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He, Y.W., Xu, M., Lin, K., Ng, Y.J.A., Wen, C.M., Wang, L.H., Liu, Z.D., Zhang, H.B., Dong, Y.H., Dow, J.M., and Zhang, L.H. (2006). Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication- dependent genes and functions. Mol Microbiol 59, 610–622.

    Article  CAS  PubMed  Google Scholar 

  • He, Y.W., and Zhang, L.H. (2008). Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev 32, 842–857.

    Article  CAS  PubMed  Google Scholar 

  • Heidel, A.J., Barazani, O., and Baldwin, I.T. (2010). Interaction between herbivore defense and microbial signaling: bacterial quorum-sensing compounds weaken JA-mediated herbivore resistance in Nicotiana attenuata. Chemoecology 20, 149–154.

    Article  CAS  Google Scholar 

  • Hernández-Reyes, C., Schenk, S.T., Neumann, C., Kogel, K.H., and Schikora, A. (2014). N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microbial Biotech 7, 580–588.

    Article  CAS  Google Scholar 

  • Hernandez, M., Ghersi, D., and Sanchez, R. (2009). SITEHOUND-web: a server for ligand binding site identification in protein structures. Nucleic Acids Res 37, W413–W416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornby, J.M., Jensen, E.C., Lisec, A.D., Tasto, J.J., Jahnke, B., Shoemaker, R., Dussault, P., and Nickerson, K.W. (2001). Quorum sensing in the dimorphic fungus candida albicans is mediated by farnesol. Appl Environ Microbiol 67, 2982–2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J.J., Han, J.I., Zhang, L.H., and Leadbetter, J.R. (2003). Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69, 5941–5949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J.J., Petersen, A., Whiteley, M., and Leadbetter, J.R. (2006). Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 72, 1190–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, T.P., and Wong, A.C.L. (2007). A cyclic AMP receptor proteinregulated cell-cell communication system mediates expression of a FecA homologue in Stenotrophomonas maltophilia. Appl Environ Microbiol 73, 5034–5040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudaiberdiev, S., Choudhary, K.S., Vera Alvarez, R., Gelencsér, Z., Ligeti, B., Lamba, D., and Pongor, S. (2015). Census of solo LuxR genes in prokaryotic genomes. Front Cell Infect Microbiol 5, 20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jennings, J.A., Courtney, H.S., and Haggard, W.O. (2012). Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: a pilot study. Clin Orthop Relat Res 470, 2663–2670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin, G., Liu, F., Ma, H., Hao, S., Zhao, Q., Bian, Z., Jia, Z., and Song, S. (2012). Two G-protein-coupled-receptor candidates, Cand2 and Cand7, are involved in Arabidopsis root growth mediated by the bacterial quorum-sensing signals N-acyl-homoserine lactones. Biochem Biophys Res Commun 417, 991–995.

    Article  CAS  PubMed  Google Scholar 

  • Joint, I., Tait, K., Callow, M.E., Callow, J.A., Milton, D., Williams, P., and Cá mara, M. (2002). Cell-to-cell communication across the prokaryoteeukaryote boundary. Science 298, 1207–1207.

    Article  PubMed  Google Scholar 

  • Joint, I., Tait, K., and Wheeler, G. (2007). Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos Trans R Soc B-Biol Sci 362, 1223–1233.

    Article  CAS  Google Scholar 

  • Joseph, C.M., and Phillips, D.A. (2003). Metabolites from soil bacteria affect plant water relations. Plant Physiol Biochem 41, 189–192.

    Article  CAS  Google Scholar 

  • Kakkar, A., Nizampatnam, N.R., Kondreddy, A., Pradhan, B.B., and Chatterjee, S. (2015). Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J Exp Bot 66, 6697–6714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempner, E. S. and Hanson, F. E. (1968). Aspects of light production by Photobacterium fischeri. J Bacteriol 95, 975–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keshavan, N.D., Chowdhary, P.K., Haines, D.C., and González, J.E. (2005). L-canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187, 8427–8436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjelleberg, S., Steinberg, P., Givskov, M., Gram, L., Manefield, M., and de Nys, R. (1997). Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat Microb Ecol 13, 85–93.

    Article  Google Scholar 

  • Kloepper, J.W., Ryu, C.M., and Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp.. Phytopathology 94, 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  • Koch, B., Liljefors, T., Persson, T., Nielsen, J., Kjelleberg, S., and Givskov, M. (2005). The LuxR receptor: the sites of interaction with quorumsensing signals and inhibitors. Microbiology 151, 3589–3602.

    Article  CAS  PubMed  Google Scholar 

  • LaSarre, B., and Federle, M.J. (2013). Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77, 73–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.H., Lequette, Y., and Greenberg, E.P. (2006). Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol Microbiol 59, 602–609.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y.H., Xu, J.L., Hu, J., Wang, L.H., Ong, S.L., Leadbetter, J.R., and Zhang, L.H. (2003). Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47, 849–860.

    Article  PubMed  Google Scholar 

  • Liu, D., Thomas, P.W., Momb, J., Hoang, Q.Q., Petsko, G.A., Ringe, D., and Fast, W. (2007). Structure and specificity of a quorum-quenching lactonase (AiiB) from Agrobacterium tumefaciens. Biochemistry 46, 11789–11799.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Bian, Z., Jia, Z., Zhao, Q., and Song, S. (2012). The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing signals. Mol Plant Microbe Interact 25, 677–683.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Bimerew, M., Ma, Y., Müller, H., Ovadis, M., Eberl, L., Berg, G., and Chernin, L. (2007). Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270, 299–305.

    Article  CAS  PubMed  Google Scholar 

  • Lowery, C.A., Dickerson, T.J., and Janda, K.D. (2008). Interspecies and interkingdom communication mediated by bacterial quorum sensing. Chem Soc Rev 37, 1337–1346.

    Article  CAS  PubMed  Google Scholar 

  • Manefield, M., de Nys, R., Kumar, N., Read, R., Givskov, M., Steinberg, P., and Kjelleberg, S. (1999). Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145, 283–291.

    Article  CAS  PubMed  Google Scholar 

  • Manefield, M., Rasmussen, T.B., Henzter, M., Andersen, J.B., Steinberg, P., Kjelleberg, S., and Givskov, M. (2002). Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148, 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  • Martí-Renom, M.A., Stuart, A.C., Fiser, A., Sánchez, R., Melo, F., and Šali, A. (2000). Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29, 291–325.

    Article  PubMed  Google Scholar 

  • Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anolles, G., Rolfe, B.G., and Bauer, W.D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100, 1444–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael, B., Smith, J.N., Swift, S., Heffron, F., and Ahmer, B.M.M. (2001). SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol 183, 5733–5742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nealson, K. H., Platt, T. and Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104, 313–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newman, K.L., Almeida, R.P.P., Purcell, A.H., and Lindow, S.E. (2004). Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc Natl Acad Sci USA 101, 1737–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oger, P., and Farrand, S.K. (2001). Co-evolution of the agrocinopine opines and the agrocinopine-mediated control of TraR, the quorum-sensing activator of the Ti plasmid conjugation system. Mol Microbiol 41, 1173–1185.

    Article  CAS  PubMed  Google Scholar 

  • Oh, K.B., Miyazawa, H., Naito, T., and Matsuoka, H. (2001). Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc Natl Acad Sci USA 98, 4664–4668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortíz-Castro, R., Martínez-Trujillo, M., and López-Bucio, J. (2008). N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31, 1497–1509.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, A.G., and Blackwell, H.E. (2008). Deciphering a protolanguage for bacteria-host communication. Nat Chem Biol 4, 452–454.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, A.G., Senechal, A.C., Mukherjee, A., Ané, J.M., and Blackwell, H.E. (2014). Plant responses to bacterial N-acyl L-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chem Biol 9, 1834–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang, Y., Liu, X., Ma, Y., Chernin, L., Berg, G., and Gao, K. (2009). Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124, 261–268.

    Article  CAS  Google Scholar 

  • Park, S.Y., Kang, H.O., Jang, H.S., Lee, J.K., Koo, B.T., and Yum, D.Y. (2005). Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 71, 2632–2641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patankar, A.V., and González, J.E. (2009). An orphan LuxR homolog of Sinorhizobium meliloti affects stress adaptation and competition for nodulation. Appl Environ Microbiol 75, 946–955.

    Article  CAS  PubMed  Google Scholar 

  • Patel, H.K., Ferrante, P., Covaceuszach, S., Lamba, D., Scortichini, M., and Venturi, V. (2014). The kiwifruit emerging pathogen Pseudomonas syringae pv. actinidiae does not produce AHLs but possesses Three LuxR solos. PLoS ONE 9, e87862.

    Article  CAS  Google Scholar 

  • Patel, H.K., Suárez-Moreno, Z.R., Degrassi, G., Subramoni, S., González, J.F., and Venturi, V. (2013). Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. Front Plant Sci 4, 447.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieterse, C.M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., van Wees, S.C.M., and Bakker, P.A.H.M. (2014). Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52, 347–375.

    Article  CAS  PubMed  Google Scholar 

  • Piper, K.R., Beck von Bodman, S., and Farrand, S.K. (1993). Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362, 448–450.

    Article  CAS  PubMed  Google Scholar 

  • Qian, G., Xu, F., Venturi, V., Du, L., and Liu, F. (2014). Roles of a solo LuxR in the biological control agent Lysobacter enzymogenes strain OH11. Phytopathology 104, 224–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajamani, S., Bauer, W.D., Robinson, J.B., Farrow Iii, J.M., Pesci, E.C., Teplitski, M., Gao, M., Sayre, R.T., and Phillips, D.A. (2008). The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum- sensing receptor. Mol Plant Microbe Interact 21, 1184–1192.

    Article  CAS  PubMed  Google Scholar 

  • Romero, M., Diggle, S.P., Heeb, S., Cmara, M., and Otero, A. (2008). Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 280, 73–80.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, R.P., An, S., Allan, J.H., McCarthy, Y., and Dow, J.M. (2015). The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 11, e1004986.

    Article  CAS  Google Scholar 

  • Ryan, R.P., and Dow, J.M. (2011). Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol 19, 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, R.P., Fouhy, Y., Garcia, B.F., Watt, S.A., Niehaus, K., Yang, L., Tolker-Nielsen, T., and Dow, J.M. (2008). Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol 68, 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Ryan, R.P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M.B., Berg, G., van der Lelie, D., and Dow, J.M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Micro 7, 514–525.

    Article  CAS  Google Scholar 

  • Ryu, C.M., Choi, H.K., Lee, C.H., Murphy, J.F., Lee, J.K., and Kloepper, J.W. (2013). Modulation of quorum sensing in acyl-homoserine lactoneproducing or -degrading tobacco plants leads to alteration of induced systemic resistance elicited by the Rhizobacterium Serratia marcescens 90-166. Plant Pathol J 29, 182–192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Kloepper, J.W., and Paré, P.W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134, 1017–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer, A.L., Greenberg, E.P., Oliver, C.M., Oda, Y., Huang, J.J., Bittan-Banin, G., Peres, C.M., Schmidt, S., Juhaszova, K., Sufrin, J.R., and Harwood, C.S. (2008). A new class of homoserine lactone quorum-sensing signals. Nature 454, 595–599.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer, A.L., Oda, Y., Coutinho, B.G., Pelletier, D.A., Weiburg, J., Venturi, V., Greenberg, E.P., and Harwood, C.S. (2016). A LuxR homolog in a cottonwood tree endophyte that activates gene expression in response to a plant signal or specific peptides. mBio 7, e01101–16.

    Article  Google Scholar 

  • Schenk, S.T., Hernández-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithöfer, A., Becker, A., Kogel, K.H., and Schikora, A. (2014). N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26, 2708–2723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk, S.T., and Schikora, A. (2015). AHL-priming functions via oxylipin and salicylic acid. Front Plant Sci 5, 784.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schikora, A., Schenk, S.T., Stein, E., Molitor, A., Zuccaro, A., and Kogel, K.H. (2011). N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol 157, 1407–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schikora, A., Schenk, S.T., and Hartmann, A. (2016). Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol Biol 90, 605–612.

    Article  CAS  PubMed  Google Scholar 

  • Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G.N., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., van Breusegem, F., Eberl, L., Hartmann, A., and Langebartels, C. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29, 909–918.

    Article  CAS  PubMed  Google Scholar 

  • Shiner, E.K., Rumbaugh, K.P., and Williams, S.C. (2005). Interkingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev 29, 935–947.

    Article  CAS  PubMed  Google Scholar 

  • Colnaghi Simionato, A.V., da Silva, D.S., Lambais, M.R., and Carrilho, E. (2007). Characterization of a putative Xylella fastidiosa diffusible signal factor by HRGC-EI-MS. J Mass Spectrom 42, 1375–1381.

    Article  PubMed  Google Scholar 

  • Singh, R.P., Baghel, R.S., Reddy, C.R.K., and Jha, B. (2015). Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura. Front Plant Sci 6, 117.

    PubMed  PubMed Central  Google Scholar 

  • Slater, H., Alvarez-Morales, A., Barber, C.E., Daniels, M.J., and Dow, J.M. (2000). A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol 38, 986–1003.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.N., and Ahmer, B.M.M. (2003). Detection of other microbial species by salmonella: expression of the SdiA regulon. J Bacteriol 185, 1357–1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, S., Jia, Z., Xu, J., Zhang, Z., and Bian, Z. (2011). N-butyryl-homoserine lactone, a bacterial quorum-sensing signaling molecule, induces intracellular calcium elevation in Arabidopsis root cells. Biochem Biophys Res Commun 414, 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Straight, P.D., and Kolter, R. (2009). Interspecies chemical communication in bacterial development. Annu Rev Microbiol 63, 99–118.

    Article  CAS  PubMed  Google Scholar 

  • Subramoni, S., Gonzalez, J.F., Johnson, A., Péchy-Tarr, M., Rochat, L., Paulsen, I., Loper, J.E., Keel, C., and Venturi, V. (2011). Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl Environ Microbiol 77, 4579–4588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subramoni, S., and Venturi, V. (2009). LuxR-family “solos”: bachelor sensors/ regulators of signalling molecules. Microbiology 155, 1377–1385.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J.L., Liu, Y.N., Barber, C.E., Dow, J.M., Wootton, J.C., and Daniels, M.J. (1991). Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Molec Gen Genet 226, 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Teplitski, M., Chen, H., Rajamani, S., Gao, M., Merighi, M., Sayre, R.T., Robinson, J.B., Rolfe, B.G., and Bauer, W.D. (2004). Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134, 137–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teplitski, M., Robinson, J.B., and Bauer, W.D. (2000). Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13, 637–648.

    Article  CAS  PubMed  Google Scholar 

  • Thowthampitak, J., Shaffer, B.T., Prathuangwong, S., and Loper, J.E. (2008). Role of rpfF in virulence and exoenzyme production of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean. Phytopathology 98, 1252–1260.

    Article  CAS  PubMed  Google Scholar 

  • Uroz, S., Chhabra, S.R., Cámara, M., Williams, P., Oger, P., and Dessaux, Y. (2005). N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151, 3313–3322.

    Article  CAS  PubMed  Google Scholar 

  • Uroz, S., Oger, P.M., Chapelle, E., Adeline, M.T., Faure, D., and Dessaux, Y. (2008). A rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74, 1357–1366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeputte, O.M., Kiendrebeogo, M., Rajaonson, S., Diallo, B., Mol, A., El Jaziri, M., and Baucher, M. (2010). Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 76, 243–253.

    Article  CAS  PubMed  Google Scholar 

  • Vannini, A., Volpari, C., Gargioli, C., Muraglia, E., Cortese, R., De, F.R., Neddermann, P., and Di, M.S. (2002). The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21, 4393–4401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veliz-Vallejos, D.F., van Noorden, G.E., Yuan, M., and Mathesius, U. (2014). A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorumsensing signal increases nodule numbers in Medicago truncatula independent of autoregulation. Front Plant Sci 5, 551.

    Article  PubMed  PubMed Central  Google Scholar 

  • Venturi, V., and Fuqua, C. (2013). Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51, 17–37.

    Article  CAS  PubMed  Google Scholar 

  • von Bodman, S.B., Bauer, W.D., and Coplin, D.L. (2003). Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41, 455–482.

    Article  CAS  Google Scholar 

  • von Rad, U., Klein, I., Dobrev, P.I., Kottova, J., Zazimalova, E., Fekete, A., Hartmann, A., Schmitt-Kopplin, P., and Durner, J. (2008). Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229, 73–85.

    Article  CAS  Google Scholar 

  • Walker, T.S., Bais, H.P., Déziel, E., Schweizer, H.P., Rahme, L.G., Fall, R., and Vivanco, J.M. (2004). Pseudomonas aeruginosa-plant root interactions. pathogenicity, biofilm formation, and root exudation. Plant Physiol 134, 320–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Zhang, L., Geng, Y., Xi, W., Fang, R., and Jia, Y. (2011). XerR, a negative regulator of XccR in Xanthomonas campestris pv. campestris, relieves its repressor function in planta. Cell Res 21, 1131–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L.H., He, Y., Gao, Y., Wu, J.E., Dong, Y.H., He, C., Wang, S.X., Weng, L.X., Xu, J.L., Tay, L., Fang, R.X., and Zhang, L.H. (2004). A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51, 903–912.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Dai, Y., Zhang, Y., Hu, Y.B., Yang, B.Y., and Chen, S.Y. (2007). Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa. Sci China Ser C 50, 385–391.

    Article  CAS  Google Scholar 

  • Webb, B. and Sali, A. (2014). Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 47, 561–563.

    Article  Google Scholar 

  • Wheeler, G.L., Tait, K., Taylor, A., Brownlee, C., and Joint, I. (2006). Acylhomoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ 29, 608–618.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead, N.A., Barnard, A.M.L., Slater, H., Simpson, N.J.L., and Salmond, G.P.C. (2001). Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25, 365–404.

    Article  CAS  PubMed  Google Scholar 

  • Williams, P. (2007). Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153, 3923–3938.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Zhao, Y., Qian, G., and Liu, F. (2015). XocR, a LuxR solo required for virulence in Xanthomonas oryzae pv. oryzicola. Front Cell Infect Microbiol 5, 37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, J., Zhou, L., Venturi, V., He, Y.W., Kojima, M., Sakakibari, H., Höfte, M., and De Vleesschauwer, D. (2015). Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions. BMC Plant Biol 15, 10.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H.B., Wang, L.H., and Zhang, L.H. (2002a). Genetic control of quorum- sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 99, 4638–4643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Jia, Y., Wang, L., and Fang, R. (2007). A proline iminopeptidase gene upregulated in planta by a LuxR homologue is essential for pathogenicity of Xanthomonas campestris pv. campestris. Mol Microbiol 65, 121–136.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, R., Pappas, K.M., Pappas, T., Brace, J.L., Miller, P.C., Oulmassov, T., Molyneaux, J.M., Anderson, J.C., Bashkin, J.K., Winans, S.C., and Joachimiak, A. (2002). Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417, 971–974.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Q., Li, M., Jia, Z., Liu, F., Ma, H., Huang, Y., and Song, S. (2016). AtMYB44 positively regulates the enhanced elongation of primary roots induced by N-3-oxo-hexanoyl-homoserine lactone in Arabidopsis thaliana. Mol Plant Microbe Interact 29, 774–785.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Q., Zhang, C., Jia, Z., Huang, Y., Li, H., and Song, S. (2015). Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana. Front Plant Sci 5, 807.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Wang, X.Y., Sun, S., Yang, L.C., Jiang, B.L., and He, Y.W. (2015). Identification and characterization of naturally occurring DSF-family quorum sensing signal turnover system in the phytopathogen Xanthomonas. Environ Microbiol 17, 4646–4658.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by National Basic Research Program of China (2015B150600), National Key R&D Program (2016YFD0100600), and National Natural Science Foundation of China (31370161).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongxiang Fang or Yantao Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, J., Fang, R. & Jia, Y. Interkingdom signaling in plant-microbe interactions. Sci. China Life Sci. 60, 785–796 (2017). https://doi.org/10.1007/s11427-017-9092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9092-3

Keywords

Navigation