Skip to main content
Log in

Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.)

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Phospholipase C (PLC) are important regulatory enzymes involved in several lipid and Ca2+-dependent signaling pathways. Previous studies have elucidated the versatile roles of PLC genes in growth, development and stress responses of many plants, however, the systematic analyses of PLC genes in the important fiber-producing plant, cotton, are still deficient. In this study, through genome-wide survey, we identified twelve phosphatidylinositol-specific PLC (PI-PLC) and nine non-specific PLC (NPC) genes in the allotetraploid upland cotton Gossypium hirsutum and nine PI-PLC and six NPC genes in two diploid cotton G. arboretum and G.raimondii, respectively. The PI-PLC and NPC genes of G. hirsutum showed close phylogenetic relationship with their homologous genes in the diploid cottons and Arabidopsis. Segmental and tandem duplication contributed greatly to the formation of the gene family. Expression profiling indicated that few of the PLC genes are constitutely expressed, whereas most of the PLC genes are preferentially expressed in specific tissues and abiotic stress conditions. Promoter analyses further implied that the expression of these PLC genes might be regulated by MYB transcription factors and different phytohormones. These results not only suggest an important role of phospholipase C members in cotton plant development and abiotic stress response but also provide good candidate targets for future molecular breeding of superior cotton cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, K.L., and Wendel, J.F. (2004). Exploring the genomic mysteries of polyploidy in cotton. Biol J Linn Soc 82, 573–581.

    Article  Google Scholar 

  • Bunney, T.D., and Katan, M. (2011). PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 36, 88–96.

    Article  CAS  PubMed  Google Scholar 

  • Cedroni, M.L., Cronn, R.C., Adams, K.L., Wilkins, T.A., and Wendel, J.F. (2003). Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Mol Biol 51, 313–325.

    Article  CAS  PubMed  Google Scholar 

  • Chap, H. (2016). Forty five years with membrane phospholipids, phospholipases and lipid mediators: a historical perspective. Biochimie 125, 234–249.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Zhang, Y., Liu, J., Xia, M., Wang, W., and Shen, F. (2014). Genome-wide analysis of the RNA helicase gene family in Gossypium raimondii. Int J Mol Sci 15, 4635–4656.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J.Y., Huang, J.Q., Li, N.Y., Ma, X.F., Wang, J.L., Liu, C., Liu, Y.F., Liang, Y., Bao, Y.M., and Dai, X.F. (2015). Genome-wide analysis of the gene families of resistance gene analogues in cotton and their response to Verticillium wilt. BMC Plant Biol 15, 148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cronn, R.C., Small, R.L., and Wendel, J.F. (1999). Duplicated genes evolve independently after polyploid formation in cotton. Proc Natl Acad Sci USA 96, 14406–14411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flagel, L.E., and Wendel, J.F. (2010). Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186, 184–193.

    Article  CAS  PubMed  Google Scholar 

  • Gao, K., Liu, Y.L., Li, B., Zhou, R.G., Sun, D.Y., and Zheng, S.Z. (2014). Arabidopsis thaliana phosphoinositide-specific phospholipase C isoform 3 (AtPLC3) and AtPLC9 have an additive effect on thermotolerance. Plant Cell Physiol 55, 1873–1883.

    Article  CAS  PubMed  Google Scholar 

  • Gaunt, S.J. (2015). The significance of Hox gene collinearity. Int J Dev Biol 59, 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Gresset, A., Sondek, J., Harden, T.K. (2012). The phospholipase C isozymes and their regulation. Subcell Biochem 58, 61-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Q., Jones, D.C., Li, W., Xie, F., Ma, J., Sun, R., Wang, Q., Zhu, S., and Zhang, B. (2016). Genome-wide identification of R2R3-MYB genes and expression analyses during abiotic stress in Gossypium raimondii. Sci Rep 6, 22980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, Y., Zhao, J., Guo, L., Kim, S.C., Deng, X., Wang, G., Zhang, G., Li, M., and Wang, X. (2016). Plant phospholipases D and C and their diverse functions in stress responses. Prog Lipid Res 62, 55–74.

    Article  CAS  PubMed  Google Scholar 

  • Hu, G., Koh, J., Yoo, M.J., Chen, S., and Wendel, J.F. (2015). Gene-expression novelty in allopolyploid cotton: a proteomic perspective. Genets 200, 91–104.

    Article  CAS  Google Scholar 

  • Huang, J., Chen, F., Wu, S., Li, J., and Xu, W. (2016). Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. Sci China Life Sci 59, 194–205.

    Article  CAS  PubMed  Google Scholar 

  • Kadamur, G., and Ross, E.M. (2013). Mammalian phospholipase C. Annu Rev Physiol 75, 127–154.

    Article  CAS  PubMed  Google Scholar 

  • Kocourková, D., Krcková, Z., Pejchar, P., Veselková, S., Valentová, O., Wimalasekera, R., Scherer, G.F.E., and Martinec, J. (2011). The phosphatidylcholine- hydrolysing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress. J Exp Bot 62, 3753–3763.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondrashov, F.A., Rogozin, I.B., Wolf, Y.I., and Koonin, E.V. (2002). Selection in the evolution of gene duplications. Genome Biol 3, research0008.1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong, X., Luo, Z., Dong, H., Eneji, A.E., and Li, W. (2016). H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity. J Exp Bot 67, 2247–2261.

    Article  CAS  PubMed  Google Scholar 

  • Krcková, Z., Brouzdová, J., Danek, M., Kocourková, D., Rainteau, D., Ruelland, E., Valentová, O., Pejchar, P., and Martinec, J. (2015). Arabidopsis non-specific phospholipase C1: characterization and its involvement in response to heat stress. Front Plant Sci 6, 928.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van, P.Y., Rouzé, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30, 325–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, F., Fan, G., Wang, K., Sun, F., Yuan, Y., Song, G., Li, Q., Ma, Z., Lu, C., Zou, C., Chen, W., Liang, X., Shang, H., Liu, W., Shi, C., Xiao, G., Gou, C., Ye, W., Xu, X., Zhang, X., Wei, H., Li, Z., Zhang, G., Wang, J., Liu, K., Kohel, R.J., Percy, R.G., Yu, J.Z., Zhu, Y.X., Wang, J., and Yu, S. (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46, 567–572.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., Kohel, R.J., Ma, Z., Shang, H., Ma, X., Wu, J., Liang, X., Huang, G., Percy, R.G., Liu, K., Yang, W., Chen, W., Du, X., Shi, C., Yuan, Y., Ye, W., Liu, X., Zhang, X., Liu, W., Wei, H., Wei, S., Huang, G., Zhang, X., Zhu, S., Zhang, H., Sun, F., Wang, X., Liang, J., Wang, J., He, Q., Huang, L., Wang, J., Cui, J., Song, G., Wang, K., Xu, X., Yu, J.Z., Zhu, Y., and Yu, S. (2015a). Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33, 524–530.

    Article  PubMed  Google Scholar 

  • Li, L., He, Y., Wang, Y., Zhao, S., Chen, X., Ye, T., Wu, Y., and Wu, Y. (2015b). Arabidopsis PLC2 is involved in auxin-modulated reproductive development. Plant J 84, 504–515.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G.J., Xiao, G.H., Liu, N.J., Liu, D., Chen, P.S., Qin, Y.M., and Zhu, Y.X. (2015). Targeted lipidomics studies reveal that linolenic acid promotes cotton fiber elongation by activating phosphatidylinositol and phosphatidylinositol monophosphate biosynthesis. Mol Plant 8, 911–921.

    Article  CAS  PubMed  Google Scholar 

  • Long, M., Betrán, E., Thornton, K., and Wang, W. (2003). The origin of new genes: glimpses from the young and old. Nat Rev Genet 4, 865–875.

    Article  CAS  PubMed  Google Scholar 

  • Ma, J., Wang, Q., Sun, R., Xie, F., Jones, D.C., and Zhang, B. (2014). Genome-wide identification and expression analysis of TCP transcription factors in Gossypium raimondii. Sci Rep 4, 6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansoor, S., and Paterson, A.H. (2012). Genomes for jeans: cotton genomics for engineering superior fiber. Trends Biotech 30, 521–527.

    Article  CAS  Google Scholar 

  • Mikami, K., Repp, A., Graebe-Abts, E., and Hartmann, E. (2004). Isolation of cDNAs encoding typical and novel types of phosphoinositide-specific phospholipase C from the moss Physcomitrella patens. J Exp Bot 55, 1437–1439.

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNASeq. Nat Meth 5, 621–628.

    Article  CAS  Google Scholar 

  • Paterson, A.H., Wendel, J.F., Gundlach, H., Guo, H., Jenkins, J., Jin, D., Llewellyn, D., Showmaker, K.C., Shu, S., Udall, J., Yoo, M.J., Byers, R., Chen, W., Doron-Faigenboim, A., Duke, M.V., Gong, L., Grimwood, J., Grover, C., Grupp, K., Hu, G., Lee, T.H., Li, J., Lin, L., Liu, T., Marler, B.S., Page, J.T., Roberts, A.W., Romanel, E., Sanders, W.S., Szadkowski, E., Tan, X., Tang, H., Xu, C., Wang, J., Wang, Z., Zhang, D., Zhang, L., Ashrafi, H., Bedon, F., Bowers, J.E., Brubaker, C.L., Chee, P.W., Das, S., Gingle, A.R., Haigler, C.H., Harker, D., Hoffmann, L.V., Hovav, R., Jones, D.C., Lemke, C., Mansoor, S., Rahman, M.U., Rainville, L.N., Rambani, A., Reddy, U.K., Rong, J.K., Saranga, Y., Scheffler, B.E., Scheffler, J.A., Stelly, D.M., Triplett, B.A., van Deynze, A., Vaslin, M.F.S., Waghmare, V.N., Walford, S.A., Wright, R.J., Zaki, E.A., Zhang, T., Dennis, E.S., Mayer, K.F.X., Peterson, D.G., Rokhsar, D.S., Wang, X., and Schmutz, J. (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423–427.

    Article  CAS  PubMed  Google Scholar 

  • Peters, C., Kim, S.C., Devaiah, S., Li, M., and Wang, X. (2014). Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis. Plant Cell Environ 37, 2002–2013.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8, 785–786.

    Article  CAS  Google Scholar 

  • Pokotylo, I., Pejchar, P., Potocký, M., Kocourková, D., Krcková, Z., Ruelland, E., Kravets, V., and Martinec, J. (2013). The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 52, 62–79.

    Article  CAS  PubMed  Google Scholar 

  • Pokotylo, I., Kolesnikov, Y., Kravets, V., Zachowski, A., and Ruelland, E. (2014). Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 96, 144–157.

    Article  CAS  PubMed  Google Scholar 

  • Porto, M.S., Pinheiro, M.P.N., Batista, V.G.L., dos Santos, R.C., de Albuquerque Melo Filho, P., and de Lima, L.M. (2014). Plant promoters: an approach of structure and function. Mol Biotechnol 56, 38–49.

    Article  CAS  PubMed  Google Scholar 

  • Qin, Y.M., and Zhu, Y.X. (2011). How cotton fibers elongate: a tale of linear cell-growth mode. Curr Opin Plant Biol 14, 106–111.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haussler, D., and Miller, W. (2003). Human-mouse alignments with BLASTZ. Genome Res 13, 103–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, H., Wang, Z., Zou, C., Zhang, Z., Li, W., Li, J., Shi, Y., Gong, W., Chen, T., Liu, A., Gong, J., Ge, Q., and Yuan, Y. (2016). Comprehensive analysis of NAC transcription factors in diploid Gossypium: sequence conservation and expression analysis uncover their roles during fiber development. Sci China Life Sci 59, 142–153.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y.H., Zhu, S.W., Mao, X.Z., Feng, J.X., Qin, Y.M., Zhang, L., Cheng, J., Wei, L.P., Wang, Z.Y., and Zhu, Y.X. (2006). Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18, 651–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, A., Kanwar, P., Pandey, A., Tyagi, A.K., Sopory, S.K., Kapoor, S., and Pandey, G.K. (2013). Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice. PLoS ONE 8, e62494.

    Article  Google Scholar 

  • Singh, A., Bhatnagar, N., Pandey, A., and Pandey, G.K. (2015). Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium 58, 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, K., Dong, C.J., and Liu, J.Y. (2016a). Genome-wide analysis and expression profiling of the phospholipase D gene family in Gossypium arboreum. Sci China Life Sci 59, 130–141.

    Article  CAS  PubMed  Google Scholar 

  • Tang, K., Dong, C.J., and Liu, J.Y. (2016b). Genome-wide comparative analysis of the phospholipase D gene families among allotetraploid cotton and its diploid progenitors. PLoS ONE 11, e0156281.

    Google Scholar 

  • Tang, W., Tu, L., Yang, X., Tan, J., Deng, F., Hao, J., Guo, K., Lindsey, K., and Zhang, X. (2014). The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol 202, 509–520.

    Article  CAS  PubMed  Google Scholar 

  • Tasma, I.M., Brendel, V., Whitham, S.A., and Bhattacharyya, M.K. (2008). Expression and evolution of the phosphoinositide-specific phospholipase C gene family in Arabidopsis thaliana. Plant Physiol Biochem 46, 627–637.

    Article  CAS  PubMed  Google Scholar 

  • Vossen, J.H., Abd-El-Haliem, A., Fradin, E.F., van den Berg, G.C.M., Ekengren, S.K., Meijer, H.J.G., Seifi, A., Bai, Y., ten Have, A., Munnik, T., Thomma, B.P.H.J., and Joosten, M.H.A.J. (2010). Identification of tomato phosphatidylinositol-specific phospholipase-C (PI-PLC) family members and the role of PLC4 and PLC6 in HR and disease resistance. Plant J 62, 224–239.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Sun, N., Deng, T., Zhang, L., and Zuo, K. (2014). Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genomics 15, 961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K., Huang, G., and Zhu, Y. (2016). Transposable elements play an important role during cotton genome evolution and fiber cell development. Sci China Life Sci 59, 112–121.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Zhu, Y., Sun, L., Li, L., Jin, S., and Zhang, X. (2016). Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds. Sci China Life Sci 59, 172–182.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Wang, J.W., Yu, N., Li, C.H., Luo, B., Gou, J.Y., Wang, L.J., and Chen, X.Y. (2004). Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16, 2323–2334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Ma, Q., Dou, L., Liu, Z., Peng, R., and Yu, S. (2016). Genomewide characterization and comparative analysis of the MLO gene family in cotton. Plant Physiol Biochem 103, 106–119.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Y.H., Li, D.M., Yin, M.H., Li, X.B., Zhang, M., Wang, Y.J., Dong, J., Zhao, J., Luo, M., Luo, X.Y., Hou, L., Hu, L., and Pei, Y. (2010). Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. J Plant Physiol 167, 829–837.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., Zahid, K.R., He, L., Zhang, W., He, X., Zhang, X., Yang, X., and Zhu, L. (2013). GhCAX3 gene, a novel Ca2+/H+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction. PLoS ONE 8, e66303.

    Article  Google Scholar 

  • Xu, X., Feng, Y., Fang, S., Xu, J., Wang, X., and Guo, W. (2016). Genomewide characterization of the ß-1,3-glucanase gene family in Gossypium by comparative analysis. Sci Rep 6, 29044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo, M.J., Szadkowski, E., and Wendel, J.F. (2013). Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110, 171–180.

    Article  CAS  PubMed  Google Scholar 

  • Zhai, S., Sui, Z., Yang, A., and Zhang, J. (2005). Characterization of a novel phosphoinositide-specific phospholipase C from Zea mays and its expression in Escherichia coli. Biotechnol Lett 27, 799–804.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B. (2015). A genome-wide survey of glycolytic genes in diploid Asian cotton (Gossypium arboreum). Plant Gene 4, 1–9.

    Article  Google Scholar 

  • Zhang, F., Jin, X., Wang, L., Li, S., Wu, S., Cheng, C., Zhang, T., and Guo, W. (2016). A cotton annexin affects fiber elongation and secondary cell wall biosynthesis associated with Ca2+ influx, ROS homeostasis, and actin filament reorganization. Plant Physiol 171, 1750–1770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, M., Zheng, X., Song, S., Zeng, Q., Hou, L., Li, D., Zhao, J., Wei, Y., Li, X., Luo, M., Xiao, Y., Luo, X., Zhang, J., Xiang, C., and Pei, Y. (2011). Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29, 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J., Zhang, J., Saski, C.A., Scheffler, B.E., Stelly, D.M., Hulse-Kemp, A.M., Wan, Q., Liu, B., Liu, C., Wang, S., Pan, M., Wang, Y., Wang, D., Ye, W., Chang, L., Zhang, W., Song, Q., Kirkbride, R.C., Chen, X., Dennis, E., Llewellyn, D.J., Peterson, D.G., Thaxton, P., Jones, D.C., Wang, Q., Xu, X., Zhang, H., Wu, H., Zhou, L., Mei, G., Chen, S., Tian, Y., Xiang, D., Li, X., Ding, J., Zuo, Q., Tao, L., Liu, Y., Li, J., Lin, Y., Hui, Y., Cao, Z., Cai, C., Zhu, X., Jiang, Z., Zhou, B., Guo, W., Li, R., and Chen, Z.J. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33, 531–537.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Wang, L., Xu, X., Cai, C., and Guo, W. (2014). Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton. BMC Plant Biol 14, 345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Li, J., Zhao, X.Q., Wang, J., Wong, G.K.S., and Yu, J. (2006). KaKs_calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4, 259–263.

    Article  CAS  PubMed  Google Scholar 

  • Zou, C., Lu, C., Shang, H., Jing, X., Cheng, H., Zhang, Y., and Song, G. (2013). Genome-wide analysis of the Sus gene family in cotton. J Integr Plant Biol 55, 643–653.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for their helpful discussions. This study was supported by the State Key Basic Research and Development Plan (2010CB126003), and the National Transgenic Animals and Plants Research Project (2011ZX08005-003, 2011ZX08009-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Yuan Liu.

Electronic supplementary material

Table S1

The Ka/Ks ratios for duplicate PLC genes in G. hirsutum, G. arboreum and G. raimondii

Table S2 Signal peptide prediction of cotton PLC proteins

Table S3 Expression of the PLC family genes in upland cotton based on transcriptome data

Table S4 Identification of putative cis-regulatory elements in the promoters of cotton PLC genes

Table S5 Nucleic acid, deduced amino acid and promoter sequences of cotton PLC genes

Table S6 Primers used in this study

Figure S1 Amino acid sequence alignment of NPC proteins of G. hirsutum, G. arboreum and G. raimondii representing the conserved motifs of phosphoesterase domain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Wang, Y. & Liu, JY. Genome-wide identification and characterization of phospholipase C gene family in cotton (Gossypium spp.). Sci. China Life Sci. 61, 88–99 (2018). https://doi.org/10.1007/s11427-017-9053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9053-y

Keywords

Navigation