Skip to main content
Log in

CRISPR/Cas9-mediated correction of human genetic disease

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 system (CRISPR/Cas9) provides a powerful tool for targeted genetic editing. Directed by programmable sequence-specific RNAs, this system introduces cleavage and double-stranded breaks at target sites precisely. Compared to previously developed targeted nucleases, the CRISPR/Cas9 system demonstrates several promising advantages, including simplicity, high specificity, and efficiency. Several broad genome-editing studies with the CRISPR/Cas9 system in different species in vivo and ex vivo have indicated its strong potential, raising hopes for therapeutic genome editing in clinical settings. Taking advantage of non-homologous end-joining (NHEJ) and homology directed repair (HDR)-mediated DNA repair, several studies have recently reported the use of CRISPR/Cas9 to successfully correct disease-causing alleles ranging from single base mutations to large insertions. In this review, we summarize and discuss recent preclinical studies involving the CRISPR/Cas9-mediated correction of human genetic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aartsma-Rus, A., Kaman, W.E., Weij, R., den Dunnen, J.T., van Ommen, G.J.B., and van Deutekom, J.C.T. (2006). Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 14, 401–407.

    Article  CAS  PubMed  Google Scholar 

  • Aartsma-Rus, A., Fokkema, I., Verschuuren, J., Ginjaar, I., van Deutekom, J., van Ommen, G.J., and den Dunnen, J.T. (2009). Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30, 293–299.

    Article  PubMed  Google Scholar 

  • Aoki, Y., Yokota, T., Nagata, T., Nakamura, A., Tanihata, J., Saito, T., Duguez, S.M.R., Nagaraju, K., Hoffman, E.P., Partridge, T., and Takeda, S. (2012). Bodywide skipping of exons 45–55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci USA 109, 13763–13768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asokan, A., Schaffer, D.V., and Ju de Samulski, R. (2012). The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20, 699–708.

    Article  CAS  PubMed Central  Google Scholar 

  • Avior, Y., Sagi, I., and Benvenisty, N. (2016). Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17, 170–182.

    Article  CAS  PubMed  Google Scholar 

  • Azuma, H., Paulk, N., Ranade, A., Dorrell, C., Al-Dhalimy, M., Ellis, E., Strom, S., Kay, M.A., Finegold, M., and Grompe, M. (2007). Robust expansion of human hepatocytes in Fah -/-/Rag2 -/-/Il2rg -/- mice. Nat Biotechnol 25, 903–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamshad, M.J., Ng, S.B., Bigham, A.W., Tabor, H.K., Emond, M.J., Nickerson, D.A., and Shendure, J. (2011). Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12, 745–755.

    Article  CAS  PubMed  Google Scholar 

  • Bassuk, A.G., Zheng, A., Li, Y., Tsang, S.H., and Mahajan, V.B. (2016). Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep 6, 19969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann, J.S., Estivill, X., and Antonarakis, S.E. (2007). Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 8, 639–646.

    Article  CAS  PubMed  Google Scholar 

  • Blasco, R.B., Karaca, E., Ambrogio, C., Cheong, T.C., Karayol, E., Minero, V.G., Voena, C., and Chiarle, R. (2014). Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 9, 1219–1227.

    Article  CAS  PubMed  Google Scholar 

  • Bondeson, M.L., Dahl, N., Malmgren, H., Kleijer, W.J., Tö nnesen, T., Carlberg, B.M., and Pettersson, U. (1995). Inversion of the IDS gene resulting from recombination with IDS-related sequences in a common cause of the Hunter syndrome. Hum Mol Genet 4, 615–621.

    Article  CAS  PubMed  Google Scholar 

  • Carbery, I.D., Ji, D., Harrington, A., Brown, V., Weinstein, E.J., Liaw, L., and Cui, X. (2010). Targeted genome modification in mice using zinc-finger nucleases. Genets 186, 451–459.

    Article  CAS  Google Scholar 

  • Chang, C.W., Lai, Y.S., Westin, E., Khodadadi-Jamayran, A., Pawlik, K.M., Lamb Jr., L.S., Goldman, F.D., and Townes, T.M. (2015). Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep 12, 1668–1677.

    Article  CAS  PubMed  Google Scholar 

  • Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., and Xi, J.J. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23, 465–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, F., Pruett-Miller, S.M., Huang, Y., Gjoka, M., Duda, K., Taunton, J., Collingwood, T.N., Frodin, M., and Davis, G.D. (2011). High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Meth 8, 753–755.

    Article  CAS  Google Scholar 

  • Cheng, S.H., Gregory, R.J., Marshall, J., Paul, S., Souza, D.W., White, G.A., O’ Riordan, C.R., and Smith, A.E. (1990). Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827–834.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z.G., and Zhang, Y.A. (2015). Cell therapy for macular degeneration— first phase I/II pluripotent stem cell-based clinical trial shows promise. Sci China Life Sci 58, 119–120.

    Article  PubMed  Google Scholar 

  • Cho, S.W., Kim, S., Kim, J.M., and Kim, J.S. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230–232.

    Article  CAS  PubMed  Google Scholar 

  • Choi, P.S., and Meyerson, M. (2014). Targeted genomic rearrangements using CRISPR/Cas technology. Nat Commun 5, 3728.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidoff, A.M., Gray, J.T., Ng, C.Y.C., Zhang, Y., Zhou, J., Spence, Y., Bakar, Y., and Nathwani, A.C. (2005). Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther 11, 875–888.

    Article  CAS  PubMed  Google Scholar 

  • Dickinson, D.J., Ward, J.D., Reiner, D.J., and Goldstein, B. (2013). Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Meth 10, 1028–1034.

    Article  CAS  Google Scholar 

  • Ding, Q., Strong, A., Patel, K.M., Ng, S.L., Gosis, B.S., Regan, S.N., Cowan, C.A., Rader, D.J., and Musunuru, K. (2014). Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circul Res 115, 488–492.

    Article  CAS  Google Scholar 

  • Filareto, A., Parker, S., Darabi, R., Borges, L., Iacovino, M., Schaaf, T., Mayerhofer, T., Chamberlain, J.S., Ervasti, J.M., McIvor, R.S., Kyba, M., and Perlingeiro, R.C.R. (2013). An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 4, 1549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flynn, R., Grundmann, A., Renz, P., Hänseler, W., James, W.S., Cowley, S.A., and Moore, M.D. (2015). CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol 43, 838–848.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frazer, K.A., Murray, S.S., Schork, N.J., and Topol, E.J. (2009). Human genetic variation and its contribution to complex traits. Nat Rev Genet 10, 241–251.

    Article  CAS  PubMed  Google Scholar 

  • Friedland, A.E., Tzur, Y.B., Esvelt, K.M., Colaiácovo, M.P., Church, G.M., and Calarco, J.A. (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Meth 10, 741–743.

    CAS  Google Scholar 

  • Gao, X. (2015). Model animals and their applications. Sci China Life Sci 58, 319–320.

    Article  CAS  PubMed  Google Scholar 

  • Gilissen, C., Hoischen, A., Brunner, H.G., and Veltman, J.A. (2011). Unlocking Mendelian disease using exome sequencing. Genome Biol 12, 228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graw, J., Brackmann, H.H., Oldenburg, J., Schneppenheim, R., Spannagl, M., and Schwaab, R. (2005). Haemophilia A: from mutation analysis to new therapies. Nat Rev Genet 6, 488–501.

    Article  CAS  PubMed  Google Scholar 

  • Hanna, J., Wernig, M., Markoulaki, S., Sun, C.W., Meissner, A., Cassady, J.P., Beard, C., Brambrink, T., Wu, L.C., Townes, T.M., and Jaenisch, R. (2007). Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, E.P., Brown Jr., R.H., and Kunkel, L.M. (1987). Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Wang, Y., Yan, W., Smith, C., Ye, Z., Wang, J., Gao, Y., Mendelsohn, L., and Cheng, L. (2015). Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells 33, 1470–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huertas, P. (2010). DNA resection in eukaryotes: deciding how to fix the break. Nat Struct Mol Biol 17, 11–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R.J., and Joung, J.K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inagaki, K., Fuess, S., Storm, T.A., Gibson, G.A., Mctiernan, C.F., Kay, M.A., and Nakai, H. (2006). Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 14, 45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110, 13904–13909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., and Doudna, J. (2013). RNAprogrammed genome editing in human cells. eLife 2, e00471.

    Article  Google Scholar 

  • Kay, M.A., Manno, C.S., Ragni, M.V., Larson, P.J., Couto, L.B., McClelland, A., Glader, B., Chew, A.J., Tai, S.J., Herzog, R.W., Arruda, V., Johnson, F., Scallan, C., Skarsgard, E., Flake, A.W., and High, K.A. (2000). Evidence for gene transfer and expression of factor IXin haemophilia B patients treated with an AAV vector. Nat Genet 24, 257–261.

    Article  CAS  PubMed  Google Scholar 

  • Kimbrel, E.A., and Lanza, R. (2015). Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 14, 681–692.

    Article  CAS  PubMed  Google Scholar 

  • Li, H.L., Fujimoto, N., Sasakawa, N., Shirai, S., Ohkame, T., Sakuma, T., Tanaka, M., Amano, N., Watanabe, A., Sakurai, H., Yamamoto, T., Yamanaka, S., and Hotta, A. (2015). Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Rep 4, 143–154.

    Article  CAS  Google Scholar 

  • Li, W., Teng, F., Li, T., and Zhou, Q. (2013). Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPRCas systems. Nat Biotechnol 31, 684–686.

    Article  CAS  PubMed  Google Scholar 

  • Lisowski, L., Dane, A.P., Chu, K., Zhang, Y., Cunningham, S.C., Wilson, E.M., Nygaard, S., Grompe, M., Alexander, I.E., and Kay, M.A. (2014). Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506, 382–386.

    Article  CAS  PubMed  Google Scholar 

  • Long, C., McAnally, J.R., Shelton, J.M., Mireault, A.A., Bassel-Duby, R., and Olson, E.N. (2014). Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Q.L., Yokota, T., Takeda, S., Garcia, L., Muntoni, F., and Partridge, T. (2011). The status of exon skipping as a therapeutic approach to Duchenne muscular dystrophy. Mol Ther 19, 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Maddalo, D., Manchado, E., Concepcion, C.P., Bonetti, C., Vidigal, J.A., Han, Y.C., Ogrodowski, P., Crippa, A., Rekhtman, N., de Stanchina, E., Lowe, S.W., and Ventura, A. (2014). In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516, 423–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali, P., Esvelt, K.M., and Church, G.M. (2013a). Cas9 as a versatile tool for engineering biology. Nat Meth 10, 957–963.

    Article  CAS  Google Scholar 

  • Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013b). RNA-guided human genome engineering via Cas9. Science 339, 823–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manno, C.S., Pierce, G.F., Arruda, V.R., Glader, B., Ragni, M., Rasko, J.J., Rasko, J., Ozelo, M.C., Hoots, K., Blatt, P., Konkle, B., Dake, M., Kaye, R., Razavi, M., Zajko, A., Zehnder, J., Rustagi, P.K., Nakai, H., Chew, A., Leonard, D., Wright, J.F., Lessard, R.R., Sommer, J.M., Tigges, M., Sabatino, D., Luk, A., Jiang, H., Mingozzi, F., Couto, L., Ertl, H.C., High, K.A., and Kay, M.A. (2006). Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12, 342–347.

    Article  CAS  PubMed  Google Scholar 

  • Mingozzi, F., and High, K.A. (2011). Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12, 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Morrissey, D.V., Lockridge, J.A., Shaw, L., Blanchard, K., Jensen, K., Breen, W., Hartsough, K., Machemer, L., Radka, S., Jadhav, V., Vaish, N., Zinnen, S., Vargeese, C., Bowman, K., Shaffer, C.S., Jeffs, L.B., Judge, A., MacLachlan, I., and Polisky, B. (2005). Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23, 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, S., and Thrasher, A.J. (2011). iPSCs: unstable origins? Mol Ther 19, 1188–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathwani, A.C., Gray, J.T., Ng, C.Y.C., Zhou, J., Spence, Y., Waddington, S.N., Tuddenham, E.G.D., Kemball-Cook, G., McIntosh, J., Boon-Spijker, M., Mertens, K., and Davidoff, A.M. (2006). Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 107, 2653–2661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathwani, A.C., Tuddenham, E.G.D., Rangarajan, S., Rosales, C., McIntosh, J., Linch, D.C., Chowdary, P., Riddell, A., Pie, A.J., Harrington, C., O’Beirne, J., Smith, K., Pasi, J., Glader, B., Rustagi, P., Ng, C.Y.C., Kay, M.A., Zhou, J., Spence, Y., Morton, C.L., Allay, J., Coleman, J., Sleep, S., Cunningham, J.M., Srivastava, D., Basner-Tschakarjan, E., Mingozzi, F., High, K.A., Gray, J.T., Reiss, U.M., Nienhuis, A.W., and Davidoff, A.M. (2011). Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365, 2357–2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikiforova, M.N., Stringer, J.R., Blough, R., Medvedovic, M., Fagin, J.A., and Nikiforov, Y.E. (2000). Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141.

    Article  CAS  PubMed  Google Scholar 

  • Okada, T., and Takeda, S. (2013). Current challenges and future directions in recombinant AAV-mediated gene therapy of Duchenne muscular dystrophy. Pharmaceuticals 6, 813–836.

    Article  CAS  PubMed Central  Google Scholar 

  • Olivares, E.C., Hollis, R.P., Chalberg, T.W., Meuse, L., Kay, M.A., and Calos, M.P. (2002). Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat Biotech 20, 1124–1128.

    Article  CAS  Google Scholar 

  • Ott, J., Kamatani, Y., and Lathrop, M. (2011). Family-based designs for genome-wide association studies. Nat Rev Genet 12, 465–474.

    Article  CAS  PubMed  Google Scholar 

  • Ousterout, D.G., Kabadi, A.M., Thakore, P.I., Majoros, W.H., Reddy, T.E., and Gersbach, C.A. (2015). Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6, 6244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, C.Y., Kim, D.H., Son, J.S., Sung, J.J., Lee, J., Bae, S., Kim, J.H., Kim, D.W., and Kim, J.S. (2015). Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17, 213–220.

    Article  CAS  PubMed  Google Scholar 

  • Park, I.H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M.W., Cowan, C., Hochedlinger, K., and Daley, G.Q. (2008). Disease-specific induced pluripotent stem cells. Cell 134, 877–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulk, N.K., Wursthorn, K., Wang, Z., Finegold, M.J., Kay, M.A., and Grompe, M. (2010). Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. Hepatology 51, 1200–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichavant, C., Aartsma-Rus, A., Clemens, P.R., Davies, K.E., Dickson, G., Takeda, S., Wilton, S.D., Wolff, J.A., Wooddell, C.I., Xiao, X., and Tremblay, J.P. (2011). Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther 19, 830–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piras, B.A., Drury, J.E., Morton, C.L., Spence, Y., Lockey, T.D., Nathwani, A.C., Davidoff, A.M., and Meagher, M.M. (2016). Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector. Mol Ther Methods Clin Dev 3, 16015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirazzoli, V., Nebhan, C., Song, X., Wurtz, A., Walther, Z., Cai, G., Zhao, Z., Jia, P., de Stanchina, E., Shapiro, E.M., Gale, M., Yin, R., Horn, L., Carbone, D.P., Stephens, P.J., Miller, V., Gettinger, S., Pao, W., and Politi, K. (2014). Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1. Cell Rep 7, 999–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt, R.J., Chen, S., Zhou, Y., Yim, M.J., Swiech, L., Kempton, H.R., Dahlman, J.E., Parnas, O., Eisenhaure, T.M., Jovanovic, M., Graham, D.B., Jhunjhunwala, S., Heidenreich, M., Xavier, R.J., Langer, R., Anderson, D.G., Hacohen, N., Regev, A., Feng, G., Sharp, P.A., and Zhang, F. (2014). CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porteus, M.H., and Dann, C.T. (2015). Genome editing of the germline: broadening the discussion. Mol Ther 23, 980–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A., and Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raya, A., Rodríguez-Pizà, I., Guenechea, G., Vassena, R., Navarro, S., Barrero, M.J., Consiglio, A., Castellà, M., Río, P., Sleep, E., González, F., Tiscornia, G., Garreta, E., Aasen, T., Veiga, A., Verma, I.M., Surrallés, J., Bueren, J., and Izpisúa Belmonte, J.C. (2009). Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinton, D.A., and Daley, G.Q. (2012). The promise of induced pluripotent stem cells in research and therapy. Nature 481, 295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savic, N., and Schwank, G. (2016). Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res 168, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Schwank, G., Koo, B.K., Sasselli, V., Dekkers, J.F., Heo, I., Demircan, T., Sasaki, N., Boymans, S., Cuppen, E., van der Ent, C.K., Nieuwenhuis, E.E.S., Beekman, J.M., and Clevers, H. (2013). Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658.

    Article  CAS  PubMed  Google Scholar 

  • Sebestyén, M.G., Budker, V.G., Budker, T., Subbotin, V.M., Zhang, G., Monahan, S.D., Lewis, D.L., Wong, S.C., Hagstrom, J.E., and Wolff, J.A. (2006). Mechanism of plasmid delivery by hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules. J Gene Med 8, 852–873.

    PubMed  Google Scholar 

  • Sharpless, N.E., and Depinho, R.A. (2006). The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5, 741–754.

    Article  CAS  PubMed  Google Scholar 

  • Shinmyo, Y., Tanaka, S., Tsunoda, S., Hosomichi, K., Tajima, A., and Kawasaki, H. (2016). CRISPR/Cas9-mediated gene knockout in the mouse brain using in utero electroporation. Sci Rep 6, 20611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, K.R. (2004). Gene therapy: the potential applicability of gene transfer technology to the human germline. Int J Med Sci 1, 76–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, B., Fan, Y., He, W., Zhu, D., Niu, X., Wang, D., Ou, Z., Luo, M., and Sun, X. (2015). Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 24, 1053–1065.

    Article  CAS  PubMed  Google Scholar 

  • Suda, T., and Liu, D. (2007). Hydrodynamic gene delivery: its principles and applications. Mol Ther 15, 2063–2069.

    Article  CAS  PubMed  Google Scholar 

  • Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombetta, J., Sur, M., and Zhang, F. (2015). In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33, 102–106.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Trounson, A., and De Witt, N.D. (2016). Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17, 194–200.

    Article  CAS  PubMed  Google Scholar 

  • Veltman, J.A., and Brunner, H.G. (2012). De novo mutations in human genetic disease. Nat Rev Genet 13, 565–575.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner, A., Zauberman, N., and Minsky, A. (2009). Recombinational DNA repair in a cellular context: a search for the homology search. Nat Rev Micro 7, 748–755.

    Article  CAS  Google Scholar 

  • Wu, Y., Liang, D., Wang, Y., Bai, M., Tang, W., Bao, S., Yan, Z., Li, D., and Li, J. (2013). Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13, 659–662.

    Article  CAS  PubMed  Google Scholar 

  • Xie, F., Ye, L., Chang, J.C., Beyer, A.I., Wang, J., Muench, M.O., and Kan, Y.W. (2014). Seamleßs gene correction of ß-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24, 1526–1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Park, K.H., Zhao, L., Xu, J., El Refaey, M., Gao, Y., Zhu, H., Ma, J., and Han, R. (2016). CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 24, 564–569.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., and Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Wang, L., Bell, P., McMenamin, D., He, Z., White, J., Yu, H., Xu, C., Morizono, H., Musunuru, K., Batshaw, M.L., and Wilson, J.M. (2016a). A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34, 334–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Zhang, X., Yi, L., Hou, Z., Chen, J., Kou, X., Zhao, Y., Wang, H., Sun, X.F., Jiang, C., Wang, Y., and Gao, S. (2016b). Naïve induced pluripotent stem cells generated from ß-thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cell Transl Med 5, 8–19.

    Article  CAS  Google Scholar 

  • Yin, H., Xue, W., Chen, S., Bogorad, R.L., Benedetti, E., Grompe, M., Koteliansky, V., Sharp, P.A., Jacks, T., and Anderson, D.G. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32, 551–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimi, K., Kaneko, T., Voigt, B., and Mashimo, T. (2014). Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat Commun 5, 4240.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., and Thomson, J.A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Z., Ren, M., Wang, Z., Zhang, B., Rong, Y.S., Jiao, R., and Gao, G. (2013). Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genets 195, 289–291.

    Article  CAS  Google Scholar 

  • Zhang, D., and Li, J.F. (2016). DNA-guided genome editing tool. Sci China Life Sci 59, 740–741.

    Article  PubMed  Google Scholar 

  • Zhang, D., Li, Z., Yan, B., and Li, J.F. (2016). A novel RNA-guided RNAtargeting CRISPR tool. Sci China Life Sci 59, 854–856.

    Article  PubMed  Google Scholar 

  • Zhang, X., and Wang, S. (2016). From the first human gene-editing to the birth of three-parent baby. Sci China Life Sci 59, 1341–1342.

    Article  PubMed  Google Scholar 

  • Zincarelli, C., Soltys, S., Rengo, G., and Rabinowitz, J.E. (2008). Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16, 1073–1080.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation (NSFC81502677, NSFC81602699, NSFC81123003), the National Key Research and Development Program of China (2016YFA0201402), and the Key Technologies R & D program of Sichuan Province (2015FZ0040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Men.

Additional information

Contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men, K., Duan, X., He, Z. et al. CRISPR/Cas9-mediated correction of human genetic disease. Sci. China Life Sci. 60, 447–457 (2017). https://doi.org/10.1007/s11427-017-9032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-017-9032-4

Keywords

Navigation