Skip to main content
Log in

Chaetocin reactivates the lytic replication of Epstein-Barr virus from latency via reactive oxygen species

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Oxidative stress, regarded as a negative effect of free radicals in vivo, takes place when organisms suffer from harmful stimuli. Some viruses can induce the release of reactive oxygen species (ROS) in infected cells, which may be closely related with their pathogenicity. In this report, chaetocin, a fungal metabolite reported to have antimicrobial and cytostatic activity, was studied for its effect on the activation of latent Epstein-Barr virus (EBV) in B95-8 cells. We found that chaetocin remarkably up-regulated EBV lytic transcription and DNA replication at a low concentration (50 nmol L−1). The activation of latent EBV was accompanied by an increased cellular ROS level. N-acetyl-L-cysteine (NAC), an ROS inhibitor, suppressed chaetocin-induced EBV activation. Chaetocin had little effect on histone H3K9 methylation, while NAC also significantly reduced H3K9 methylation. These results suggested that chaetocin reactivates latent EBV primarily via ROS pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böcker, J.F., Tiedemann, K.H., Bornkamm, G.W., and Zur Hausen, H. (1980). Characterization of an EBV-like virus from African green monkey lymphoblasts. Virology 101, 291–295.

    Article  PubMed  Google Scholar 

  • Chaib, H., Nebbioso, A., Prebet, T., Castellano, R., Garbit, S., Restouin, A., Vey, N., Altucci, L., and Collette, Y. (2012). Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1. Leukemia 26, 662–674.

    Article  CAS  PubMed  Google Scholar 

  • Countryman, J., and Miller, G. (1985). Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci USA 82, 4085–4089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit, D., Ghildiyal, R., Anto, N.P., and Sen, E. (2014). Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis 5, e1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbini Dhouib, I., Jallouli, M., Annabi, A., Gharbi, N., Elfazaa, S., and Lasram, M.M. (2016). A minireview on N-acetylcysteine: an old drug with new approaches. Life Sci 151, 359–363.

    Article  CAS  PubMed  Google Scholar 

  • Fang, J., Seki, T., and Maeda, H. (2009). Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliver Rev 61, 290–302.

    Article  CAS  Google Scholar 

  • Freire, F.C.O., Kozakiewicz, Z., and Paterson, R.R.M. (2000). Mycoflora and mycotoxins in Brazilian black pepper, white pepper and Brazil nuts. Mycopathologia 149, 13–19.

    Article  CAS  PubMed  Google Scholar 

  • Gargouri, B., Nasr, R., ben Mansour, R., Lassoued, S., Mseddi, M., Attia, H., El Feki, A.F., and Van Pelt, J. (2011). Reactive oxygen species production and antioxidant enzyme expression after Epstein-Barr virus lytic cycle induction in Raji cell line. Biol Trace Elem Res 144, 1449–1457.

    Article  CAS  PubMed  Google Scholar 

  • Greiner, D., Bonaldi, T., Eskeland, R., Roemer, E., and Imhof, A. (2005). Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1, 143–145.

    Article  CAS  PubMed  Google Scholar 

  • Grogan, E., Jenson, H., Countryman, J., Heston, L., Gradoville, L., and Miller, G. (1987). Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proc Natl Acad Sci USA 84, 1332–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerschmidt, W., and Sugden, B. (2013). Replication of Epstein-Barr Viral DNA. Cold Spring Harb Perspect Biol 5, a013029.

    Article  PubMed  PubMed Central  Google Scholar 

  • Illner, D., Zinner, R., Handtke, V., Rouquette, J., Strickfaden, H., Lanctôt, C., Conrad, M., Seiler, A., Imhof, A., Cremer, T., and Cremer, M. (2010). Remodeling of nuclear architecture by the thiodioxoxpiperazine metabolite chaetocin. Exp Cell Res 316, 1662–1680.

    Article  CAS  PubMed  Google Scholar 

  • Iwasa, E., Hamashima, Y., Fujishiro, S., Higuchi, E., Ito, A., Yoshida, M., and Sodeoka, M. (2010). Total synthesis of (+)-chaetocin and its analogues: their histone methyltransferase G9a inhibitory activity. J Am Chem Soc 132, 4078–4079.

    Article  CAS  PubMed  Google Scholar 

  • Jung, H.J., Seo, I., Casciello, F., Jacquelin, S., Lane, S.W., Suh, S.I., Suh, M.H., Lee, J.S., and Baek, W.K. (2016). The anticancer effect of chaetocin is enhanced by inhibition of autophagy. Cell Death Dis 7, e2098.

    Article  CAS  PubMed  Google Scholar 

  • Khandrika, L., Kumar, B., Koul, S., Maroni, P., and Koul, H.K. (2009). Oxidative stress in prostate cancer. Cancer Lett 282, 125–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieff, E., Dambaugh, T., Heller, M., King, W., Cheung, A., van Santen, V., Hummel, M., Beisel, C., Fennewald, S., Hennessy, K., and Heineman, T. (1982). The biology and chemistry of Epstein-Barr virus. J Infect Dis 146, 506–517.

    Article  CAS  PubMed  Google Scholar 

  • Lambeth, J.D. (2004). NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Lapin, B.A., Timanovskaya, V.V., and Yakovleva, L.A. (1985). Herpesvirus HVMA: a new representative in the group of the EBV-like B-lymphotropic herpesviruses of primates. Haematol Blood Transfus 29, 312–313.

    CAS  PubMed  Google Scholar 

  • Lassoued, S., Ben Ameur, R., Ayadi, W., Gargouri, B., Ben Mansour, R., and Attia, H. (2008). Epstein-Barr virus induces an oxidative stress during the early stages of infection in B lymphocytes, epithelial, and lymphoblastoid cell lines. Mol Cell Biochem 313, 179–186.

    Article  CAS  PubMed  Google Scholar 

  • Lassoued, S., Gargouri, B., El Feki, A.F., Attia, H., and Van Pelt, J. (2010). Transcription of the Epstein-Barr virus lytic cycle activator BZLF-1 during oxidative stress induction. Biol Trace Elem Res 137, 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.S., Tanaka, A., Lau, R.Y., Nonoyama, M., and Rabin, H. (1980). Comparative studies of herpesvirus papio (baboon herpesvirus) DNA and Epstein-Barr virus DNA. J Gen Virol 51, 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., and Fang, Y.D. (2015). Histone variants: the artists of eukaryotic chromatin. Sci China Life Sci 58, 232–239.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Guo, S., Liu, X., and Su, L. (2015). Chaetocin induces endoplasmic reticulum stress response and leads to death receptor 5-dependent apoptosis in human non-small cell lung cancer cells. Apoptosis 20, 1499–1507.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G., El-Guindy, A., Countryman, J., Ye, J., and Gradoville, L. (2007). Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res 97, 81–109.

    Article  CAS  PubMed  Google Scholar 

  • Poyton, R.O., Ball, K.A., and Castello, P.R. (2009). Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 20, 332–340.

    Article  CAS  PubMed  Google Scholar 

  • Ragoczy, T., Heston, L., and Miller, G. (1998). The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72, 7978–7984.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekita, S., Yoshihira, K., Natori, S., Udagawa, S., Muroi, T., Sugiyama, Y., Kurata, H., and Umeda, M. (1981). Mycotoxin production by Chaetomium spp. and related fungi. Can J Microbiol 27, 766–772.

    Article  CAS  PubMed  Google Scholar 

  • Tibodeau, J.D., Benson, L.M., Isham, C.R., Owen, W.G., and Bible, K.C. (2009). The anticancer agent chaetocin is a competitive substrate and inhibitor of thioredoxin reductase. Antioxid Redox Signal 11, 1097–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuge, I., Morishima, T., Kimura, H., Kuzushima, K., and Matsuoka, H. (2001). Impaired cytotoxic T lymphocyte response to Epstein-Barr virusinfected NK cells in patients with severe chronic active EBV infection. J Med Virol 64, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Turrens, J.F. (2003). Mitochondrial formation of reactive oxygen species. J Physiol 552, 335–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, L.S., and Rickinson, A.B. (2004). Epstein-Barr virus: 40 years on. Nat Rev Cancer 4, 757–768.

    Article  CAS  PubMed  Google Scholar 

  • Zalani, S., Holley-Guthrie, E., and Kenney, S. (1996). Epstein-Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc Natl Acad Sci USA 93, 9194–9199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Shilun Zhang, Juan Yin and Jiang Zhong conceived and designed the study and manuscript writing. Shilun Zhang and Jiang Zhong contributed to the data processing and manuscript editing. All authors contributed to the discussion and provided comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yin, J. & Zhong, J. Chaetocin reactivates the lytic replication of Epstein-Barr virus from latency via reactive oxygen species. Sci. China Life Sci. 60, 66–71 (2017). https://doi.org/10.1007/s11427-016-0286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-016-0286-7

Keywords

Navigation