Skip to main content

Advertisement

Log in

Epstein-Barr virus induces an oxidative stress during the early stages of infection in B lymphocytes, epithelial, and lymphoblastoid cell lines

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The study investigates the direct effect of Epstein-Barr virus infection on the oxidative profile of in vitro cultivated human cells. For this purpose, a panel of human EBV target cells presenting heterogeneity in their cellular and culture types (epithelial cells or lymphocytes; primary culture or continuous cell culture) was selected. These cells are purified human B lymphocytes, DG75, 293, and HepG2 cell lines. The oxidative stress was evaluated during the early stages of infection (2, 12, and 24 h) by measuring malondialdehyde, the end product of the lipid peroxidation, as well as the activities of two antioxidant enzymes: catalase and superoxide dismutase. The obtained results were compared with those of the untreated cells and the K562 cell line which has no interaction with EBV. The incubation of the different target cells with EBV induced an oxidative stress in the purified B lymphocytes, DG75, and 293, but not in HepG2 and K562. This oxidative stress was highlighted by an increase in MDA level (P < 0.05), which began 2 h after the addition of the virus and persisted after 12 and 24 h. Simultaneously, a decrease in catalase and superoxide dismutase activities was observed (P < 0.05), suggesting an alteration of the molecular mechanisms promoting cellular resistance to reactive oxygen species (ROS). The efficiency of EBV infection, assessed by viral DNA PCR amplification, was confirmed in 293 and DG75 but not in HepG2, which was in total concordance with their oxidative profiles. In conclusion, the EBV infection of B and epithelial cells leads to the establishment of an oxidative stress which can play a key role during the viral transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MDA:

Malondialdehyde

CAT:

Catalase

SOD:

Superoxide dismutase

EBV:

Epstein-Barr virus

LCL:

Lymphoblastoid cell line

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid reactive species

PCR:

Polymerase chain reaction

H:

Hour

References

  1. Rickinson AB, Kieff E (1996) Epstein-Barr virus. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B Straus SE (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, Pa, pp 1922–1956

    Google Scholar 

  2. Raab-Traub N, Flynn K, Pearson G et al (1987) The differentiated form of nasopharyngeal carcinoma contains Epstein-Barr virus DNA. Int J Cancer 15:25–29

    Article  Google Scholar 

  3. Dambaugh T, Nkrumah FK, Biggar RJ et al (1979) Epstein-Barr virus RNA in Burkitt tumor tissue. Cell 16:313–322

    Article  PubMed  CAS  Google Scholar 

  4. Van Rees BP, Caspers E, zur Hausen A et al (2002) Different pattern of allelic loss in Epstein-Barr virus-positive gastric cancer with emphasis on the p53 tumor suppressor pathway. Am J Pathol 161:1207–1213

    PubMed  Google Scholar 

  5. Tong JH, Tsang RK, Lo KW et al (2002) Quantitative Epstein-Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin Cancer Res 8:2612–2619

    PubMed  CAS  Google Scholar 

  6. Liu MY, Chang YL, Ma J et al (1997) Evaluation of multiple antibodies to Epstein-Barr virus as markers for detecting patients with nasopharyngeal carcinoma. J Med Virol 52:262–269

    Article  PubMed  CAS  Google Scholar 

  7. Lo KW, To KF, Huang DP (2004) Focus on nasopharyngeal carcinoma. Cancer cell 5:423–428

    Article  PubMed  CAS  Google Scholar 

  8. Young LS, Murray PG (2003) Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22:5108–5121

    Article  PubMed  CAS  Google Scholar 

  9. Nanbo A, Ijoue K, Adachi-takasawa K et al (2002) Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt’s lymphoma. EMBO J 21:954–965

    Article  PubMed  CAS  Google Scholar 

  10. Cerimele F, Battle T, Lynch R et al (2005) Reactive oxygen signaling and MAPK activation distinguish Epstein-Barr virus (EBV)-positive versus EBV-negative Burkitt’s lymphpoma. Proc Natl Acad Sci 102:175–179

    Article  PubMed  CAS  Google Scholar 

  11. Lo AKF, Lo KW, Tsao SW et al (2006) Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells. Neoplasia 8:173–180

    Article  PubMed  CAS  Google Scholar 

  12. Dalpke AH, Reiner T, Ritter K (2003) Oxidative injury to endothelial cells to Epstein-Barr virus-induced autoantibodies against manganese superoxide dismutase. J Med Virol 71:408–416

    Article  PubMed  CAS  Google Scholar 

  13. Su Y, Xia YF, Yang HL et al (2003) Changes of superoxide dismutase (SOD) and metallothionien (MT) before, during, and after radiotherapy for nasopharyngeal carcinoma and their significance. Ai Zheng 22:629–633

    PubMed  CAS  Google Scholar 

  14. Segawa Y, Oda Y, Yamamoto H et al (2008) Overexpression of inducible nitric oxide synthase and accumulation of 8-OHdG in nasopharyngeal carcinoma. Histopathology 52:213–223

    PubMed  CAS  Google Scholar 

  15. Semrau F, Kühl RJ, Ritter S et al (1998) Manganese superoxide dismutase (MnSOD) and autoantibodies against MnSOD in acute viral infections. J Med Virol 55:161–167

    Article  PubMed  CAS  Google Scholar 

  16. Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  17. Imai S, Nishikawa J, Takada K (1998) Cell-to-cell contact as an efficient mode of Epstein–Barr virus infection of diverse human epithelial cells. J Virol 72:4371–4378

    PubMed  CAS  Google Scholar 

  18. Fingeroth JD, Diamond ME, Sage DR et al (1999) CD21-Dependent infection of an epithelial cell line, 293, by Epstein–Barr virus. J Virol 73:2115–2125

    PubMed  CAS  Google Scholar 

  19. Trivedi P, Spinsanti P, Cuomo L et al (2001) Differential regulation of Epstein-Barr virus (EBV) latent gene expression in Burkitt lymphoma cells infected with a recombinant EBV strain. J Virol 75:4929–4935

    Article  PubMed  CAS  Google Scholar 

  20. Ben-Bassat H, Goldblum N, Mitrani S et al (1977) Establishment in continuous culture of a new type of lymphocyte from a “Burkitt like” malignant lymphoma (line D.G.−75). Int J Cancer 19:27–33

    Article  PubMed  CAS  Google Scholar 

  21. Pokrovskaja K, Okan I, Kashuba E et al (1999) Epstein-Barr virus infection and mitogen stimulation of normal B cells induces wild-type p53 without subsequent growth arrest or apoptosis. J Gen Virol 80:987–995

    PubMed  CAS  Google Scholar 

  22. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convient assay for superoxide dismutase. Eur J Biochem 47: 469–474

    Article  PubMed  CAS  Google Scholar 

  23. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    PubMed  CAS  Google Scholar 

  24. Savard M, Bélanger C, Tardif M et al (2000) Infection of primary human monocytes by Epstein-Barr virus. J Virol 74:2612–2619

    Article  PubMed  CAS  Google Scholar 

  25. Schwarz KB (1996) Oxidative stress during viral infection. Free Radical Biol Med 21:641–649

    Article  CAS  Google Scholar 

  26. Severi T, Ying C, Vermeesch JR et al (2006) Hepatitis B virus replication causes oxidative stress in HepAD38 liver cells. Mol cell Biochem 290:79–85

    Article  PubMed  CAS  Google Scholar 

  27. Bolukbas C, Bolukbas FF, Horoz M et al (2005) Increased oxidative stress associated with severity of the liver disease in various forms of hepatitis B virus infection. BMC Infectious Disease 5:95

    Article  CAS  Google Scholar 

  28. Price TO, Ercal N, Nakaoke R et al (2005) HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res 1045:57–63

    PubMed  CAS  Google Scholar 

  29. Koike K, Miyoshi H (2006) Oxidative stress and hepatitis C viral infection. Hepatol Res 34:65–73

    Article  PubMed  CAS  Google Scholar 

  30. Jones OTG, Wood JD (1996) Oxidant production by human B lymphocytes: detection of activity and identification of components involved. Methods 9:619–627

    Article  PubMed  CAS  Google Scholar 

  31. Klein G, Giovannela B, Westman A et al (1975) An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology 5:319–334

    PubMed  CAS  Google Scholar 

  32. Klein G, Zeuthen J, Terasaki P et al (1976) Inducibility of the Epstein-Barr virus (EBV) cycle and surface marker properties of EBV-negative lymphoma lines and their in vitro EBV-converted sublines. Int J Cancer 18:639–652

    Article  PubMed  CAS  Google Scholar 

  33. Robinson J, Smith D (1981) Infection of human B lymphocytes with high multiplicities of Epstein-Barr virus: kinetics of EBNA expression, cellular DNA synthesis and mitosis. Virology 109:336–343

    Article  PubMed  CAS  Google Scholar 

  34. Gordon J, Walker L, Guy G et al (1986) Control of human B-lymphocytes replication. II. Transforming Epstein-Barr virus exploits three distinct viral signals to undermine three separate control points in B-cell growth. Immunology 58:591–595

    CAS  Google Scholar 

  35. Masucci MG, Szigetti R, Ernberg I et al (1987) Activation of B lymphocytes by Epstein-Barr virus/CR2 receptor interaction. Eur J Immunol 17:815–820

    Article  PubMed  CAS  Google Scholar 

  36. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol 279:1005–1028

    Google Scholar 

  37. Li L, Shaw PE (2004) A STAT3 dimer formed by inter-chain disulphide bridging during oxidative stress. Biochem Biophys Res Commun 322:1005–1011

    Article  PubMed  CAS  Google Scholar 

  38. Carballo M, Conde M, El Bekay R et al (1999) Oxidative stress triggers STAT3 tyrosine phosphorilation and nuclear translocation in human lymphocytes. J Biol Chem 274:17580–17586

    Article  PubMed  CAS  Google Scholar 

  39. Waris G, Turkson J, Hassanein T et al (2005) Hepatitis C Virus (HCV) Constitutively Activates STAT-3 via Oxidative Stress: Role of STAT-3 in HCV Replication. J Virol 79:1569–1580

    Article  PubMed  CAS  Google Scholar 

  40. Li QX, Young LS, Niedobitek G et al (1992) Epstein-Barr virus infection and replication in a human epithelial cell system. Nature 35:347–350

    Article  Google Scholar 

  41. Michiels C, Ras M, Toussaint O et al (1994) Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative. Free Radic Biol Med 17:235–248

    Article  PubMed  CAS  Google Scholar 

  42. Ookawara TM, Kawamura N, Kitagawa Y et al (1992) Site-specific and Random Fragmentation of Cu,Zn-Superoxide Dismutase by Glycation Reaction. J Biol Chem 267:18505–18510

    PubMed  CAS  Google Scholar 

  43. Behrend L, Henderson G, Zwacka RM (2003) Reactive oxygen species in oncogenic transformation. Biochem Soc Trans. 6:1441–1444

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saloua Lassoued.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassoued, S., Ben Ameur, R., Ayadi, W. et al. Epstein-Barr virus induces an oxidative stress during the early stages of infection in B lymphocytes, epithelial, and lymphoblastoid cell lines. Mol Cell Biochem 313, 179–186 (2008). https://doi.org/10.1007/s11010-008-9755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9755-z

Keywords

Navigation