Science China Life Sciences

, Volume 60, Issue 3, pp 239–248

How to make insulin-producing pancreatic β cells for diabetes treatment

Open Access


Around 400 million people worldwide suffer from diabetes mellitus. The major pathological event for Type 1 diabetes and advanced Type 2 diabetes is loss or impairment of insulin-secreting β cells of the pancreas. For the past 100 years, daily insulin injection has served as a life-saving treatment for these patients. However, insulin injection often cannot achieve full glucose control, and over time poor glucose control leads to severe complications and mortality. As an alternative treatment, islet transplantation has been demonstrated to effectively maintain glucose homeostasis in diabetic patients, but its wide application is limited by the scarcity of donated islets. Therefore, it is important to define new strategies to obtain functional human β cells for transplantation therapies. Here, we summarize recent progress towards the production of β cells in vitro from pluripotent stem cells or somatic cell types including α cells, pancreatic exocrine cells, gastrointestinal stem cells, fibroblasts and hepatocytes. We also discuss novel methods for optimizing β cell transplantation and maintenance in vivo. From our perspective, the future of β cell replacement therapy is very promising although it is still challenging to control differentiation of β cells in vitro and to protect these cells from autoimmune attack in Type 1 diabetic patients. Overall, tremendous progress has been made in understanding β cell differentiation and producing functional β cells with different methods. In the coming years, we believe more clinical trials will be launched to move these technologies towards treatments to benefit diabetic patients.


pancreatic β cell diabetes mellitus insulin differentiation reprogramming iPSC transplantation 


  1. Al-Hasani, K., Pfeifer, A., Courtney, M., Ben-Othman, N., Gjernes, E., Vieira, A., Druelle, N., Avolio, F., Ravassard, P., Leuckx, G., Lacas-Gervais, S., Ambrosetti, D., Benizri, E., Hecksher-Sorensen, J., Gounon, P., Ferrer, J., Gradwohl, G., Heimberg, H., Mansouri, A., and Collombat, P. (2013). Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev Cell 26, 86–100.CrossRefPubMedGoogle Scholar
  2. Anderson, J.M., Rodriguez, A., and Chang, D.T. (2008). Foreign body reaction to biomaterials. Seminars Immunol 20, 86–100.CrossRefGoogle Scholar
  3. Annes, J.P., Hyoje Ryu, J., Lam, K., Carolan, P.J., Utz, K., Hollister-Lock, J., Arvanites, A.C., Rubin, L.L., Weir, G., and Melton, D.A. (2012). Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell replication. Proc Natl Acad Sci USA 109, 3915–3920.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ariyachet, C., Tovaglieri, A., Xiang, G., Lu, J., Shah, M.S., Richmond, C.A., Verbeke, C., Melton, D.A., Stanger, B.Z., Mooney, D., Shivdasani, R.A., Mahony, S., Xia, Q., Breault, D.T., and Zhou, Q. (2016). Reprogrammed stomach tissue as a renewable source of functional β cells for blood glucose regulation. Cell Stem Cell 18, 410–421.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bar-Nur, O., Russ, H.A., Efrat, S., and Benvenisty, N. (2011). Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9, 17–23.CrossRefPubMedGoogle Scholar
  6. Bar-Nur, O., Verheul, C., Sommer, A.G., Brumbaugh, J., Schwarz, B.A., Lipchina, I., Huebner, A.J., Mostoslavsky, G., and Hochedlinger, K. (2015). Lineage conversion induced by pluripotency factors involves transient passage through an iPSC stage. Nat Biotechnol 33, 761–768.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barker, N., Huch, M., Kujala, P., van De Wetering, M., Snippert, H.J., Van Es, J.H., Sato, T., Stange, D.E., Begthel, H., van den Born, M., Danenberg, E., van den Brink, S., Korving, J., Abo, A., Peters, P.J., Wright, N., Poulsom, R., and Clevers, H. (2010). Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36.CrossRefPubMedGoogle Scholar
  8. Beattie, G.M., Rubin, J.S., Mally, M.I., Otonkoski, T., and Hayek, A. (1996). Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact. Diabetes 45, 1223–1228.CrossRefPubMedGoogle Scholar
  9. Bellin, M.D., Barton, F.B., Heitman, A., Harmon, J.V., Kandaswamy, R., Balamurugan, A.N., Sutherland, D.E.R., Alejandro, R., and Hering, B.J. (2012). Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transplant 12, 1576–1583.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bouchi, R., Foo, K.S., Hua, H., Tsuchiya, K., Ohmura, Y., Sandoval, P.R., Ratner, L.E., Egli, D., Leibel, R.L., and Accili, D. (2014). FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nat Commun 5, 4242.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bramswig, N.C., Everett, L.J., Schug, J., Dorrell, C., Liu, C., Luo, Y., Streeter, P.R., Naji, A., Grompe, M., and Kaestner, K.H. (2013). Epigenomic plasticity enables human pancreatic a to β cell reprogramming. J Clin Invest 123, 1275–1284.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brown, M.L., Andrzejewski, D., Burnside, A., and Schneyer, A.L. (2016). Activin enhances a- to β-cell transdifferentiation as a source for β-cells in male FSTL3 knockout mice. Endocrinology 157, 1043–1054.CrossRefPubMedGoogle Scholar
  13. Bruin, J.E., Asadi, A., Fox, J.K., Erener, S., Rezania, A., and Kieffer, T.J. (2015a). Accelerated maturation of human stem cell-derived pancreatic progenitor cells into insulin-secreting cells in immunodeficient rats relative to mice. Stem Cell Rep 5, 1081–1096.CrossRefGoogle Scholar
  14. Bruin, J.E., Erener, S., Vela, J., Hu, X., Johnson, J.D., Kurata, H.T., Lynn, F.C., Piret, J.M., Asadi, A., Rezania, A., and Kieffer, T.J. (2014). Characterization of polyhormonal insulin-producing cells derived in vitro from human embryonic stem cells. Stem Cell Res 12, 194–208.CrossRefPubMedGoogle Scholar
  15. Bruin, J.E., Rezania, A., and Kieffer, T.J. (2015b). Replacing and safeguarding pancreatic β cells for diabetes. Sci Transl Med 7, 316ps23–316ps23.CrossRefGoogle Scholar
  16. Bruin, J.E., Rezania, A., Xu, J., Narayan, K., Fox, J.K., O’Neil, J.J., and Kieffer, T.J. (2013). Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 56, 1987–1998.CrossRefPubMedGoogle Scholar
  17. Bruin, J.E., Saber, N., Braun, N., Fox, J.K., Mojibian, M., Asadi, A., Drohan, C., O’Dwyer, S., Rosman-Balzer, D.S., Swiss, V.A., Rezania, A., and Kieffer, T.J. (2015c). Treating diet-induced diabetes and obesity with human embryonic stem cell-derived pancreatic progenitor cells and antidiabetic drugs. Stem Cell Rep 4, 605–620.CrossRefGoogle Scholar
  18. Cavelti-Weder, C., Li, W., Zumsteg, A., Stemann-Andersen, M., Zhang, Y., Yamada, T., Wang, M., Lu, J., Jermendy, A., Bee, Y.M., Bonner-Weir, S., Weir, G.C., and Zhou, Q. (2016). Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice. Diabetologia 59, 522–532.CrossRefPubMedGoogle Scholar
  19. Chari, S., and Mao, S. (2016). Timeline: iPSCs—the first decade. Cell Stem Cell 18, 294.CrossRefPubMedGoogle Scholar
  20. Chen, L., Zhang, J., Zhang, Z., Chu, Y., Song, B., and Cai, W. (2015). Pax4 expression does not transduce pancreatic alpha cells to beta cells. Cell Physiol Biochem 36, 1735–1742.CrossRefPubMedGoogle Scholar
  21. Chen, Y.J., Finkbeiner, S.R., Weinblatt, D., Emmett, M.J., Tameire, F., Yousefi, M., Yang, C., Maehr, R., Zhou, Q., Shemer, R., Dor, Y., Li, C., Spence, J.R., and Stanger, B.Z. (2014). De novo formation of insulin-producing “neo-β cell islets” from intestinal crypts. Cell Rep 6, 1046–1058.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Collombat, P., Xu, X., Ravassard, P., Sosa-Pineda, B., Dussaud, S., Billestrup, N., Madsen, O.D., Serup, P., Heimberg, H., and Mansouri, A. (2009). The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into a and subsequently β cells. Cell 138, 449–462.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Costes, S., Langen, R., Gurlo, T., Matveyenko, A.V., and Butler, P.C. (2013). β-Cell failure in type 2 diabetes: a case of asking too much of too few? Diabetes 62, 327–335.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Courtney, M., Gjernes, E., Druelle, N.Ã., Ravaud, C., Vieira, A., Ben-Othman, N., Pfeifer, A., Avolio, F., Leuckx, G., Lacas-Gervais, S., Burel-Vandenbos, F., Ambrosetti, D., Hecksher-Sorensen, J., Ravassard, P., Heimberg, H., Mansouri, A., Collombat, P., and Habener, J. (2013). The inactivation of Arx in pancreatic a-cells triggers their neogenesis and conversion into functional β-like cells. PLoS Genet 9, e1003934.CrossRefGoogle Scholar
  25. D’Amour, K.A., Bang, A.G., Eliazer, S., Kelly, O.G., Agulnick, A.D., Smart, N.G., Moorman, M.A., Kroon, E., Carpenter, M.K., and Baetge, E.E. (2006). Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24, 1392–1401.CrossRefPubMedGoogle Scholar
  26. D’Addio, F., La Rosa, S., Maestroni, A., Jung, P., Orsenigo, E., Ben Nasr, M., Tezza, S., Bassi, R., Finzi, G., Marando, A., Vergani, A., Frego, R., Albarello, L., Andolfo, A., Manuguerra, R., Viale, E., Staudacher, C., Corradi, D., Batlle, E., Breault, D., Secchi, A., Folli, F., and Fiorina, P. (2015). Circulating IGF-I and IGFBP3 levels control human colonic stem cell function and are disrupted in diabetic enteropathy. Cell Stem Cell 17, 486–498.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group., Nathan, D.M., Zinman, B., Cleary, P.A., Backlund, J.Y., Genuth, S., Miller, R., and Orchard, T.J. (2009). Modern-day clinical course of type 1 diabetes mellitus after 30 years’ duration. Arch Intern Med 169, 1307–1316.CrossRefGoogle Scholar
  28. Dor, Y., and Melton, D.A. (2004). How important are adult stem cells for tissue maintenance. Cell Cycle 3, 1104–1106.CrossRefPubMedGoogle Scholar
  29. Drost, J., Van Jaarsveld, R.H., Ponsioen, B., Zimberlin, C., Van Boxtel, R., Buijs, A., Sachs, N., Overmeer, R.M., Offerhaus, G.J., Begthel, H., Korving, J., van De Wetering, M., Schwank, G., Logtenberg, M., Cuppen, E., Snippert, H.J., Medema, J.P., Kops, G.J.P.L., and Clevers, H. (2015). Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47.CrossRefPubMedGoogle Scholar
  30. Ferber, S., Halkin, A., Cohen, H., Ber, I., Einav, Y., Goldberg, I., Barshack, I., Seijffers, R., Kopolovic, J., Kaiser, N., and Karasik, A. (2000). Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6, 568–572.CrossRefPubMedGoogle Scholar
  31. Gefen-Halevi, S., Rachmut, I.H., Molakandov, K., Berneman, D., Mor, E., Meivar-Levy, I., and Ferber, S. (2010). NKX6.1 promotes PDX-1-induced liver to pancreatic β-cells reprogramming. Cell Reprogram 12, 655–664.CrossRefPubMedGoogle Scholar
  32. Gregorieff, A., and Clevers, H. (2015). In situ hybridization to identify gut stem cells. Curr Protoc Stem Cell Biol 34, 2F.1.1–2F.1.11.CrossRefGoogle Scholar
  33. Guo, T., Landsman, L., Li, N., and Hebrok, M. (2013). Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin- producing cells from hESCs. Diabetes 62, 1581–1592.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ham, D.S., Shin, J., Kim, J.W., Park, H.S., Cho, J.H., Yoon, K.H., and Maedler, K. (2013). Generation of functional insulin-producing cells from neonatal porcine liver-derived cells by PDX1/VP16, BETA2/NeuroD and MafA. PLoS ONE 8, e79076.CrossRefGoogle Scholar
  35. Hayek, A., and Beattie, G.M. (1997). Processing, storage and experimental transplantation of human fetal pancreatic cells. Ann Transplant 2, 46–54.PubMedGoogle Scholar
  36. Hoffmann, W. (2015). Current status on stem cells and cancers of the gastric epithelium. Int J Mol Sci 16, 19153–19169.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kelly, O.G., Chan, M.Y., Martinson, L.A., Kadoya, K., Ostertag, T.M., Ross, K.G., Richardson, M., Carpenter, M.K., D’Amour, K.A., Kroon, E., Moorman, M., Baetge, E.E., and Bang, A.G. (2011). Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol 29, 750–756.CrossRefPubMedGoogle Scholar
  38. Kitamura, Y.I., Kitamura, T., Kruse, J.P., Raum, J.C., Stein, R., Gu, W., and Accili, D. (2005). FoxO1 protects against pancreatic β cell failure through NeuroD and MafA induction. Cell Metab 2, 153–163.CrossRefPubMedGoogle Scholar
  39. Klein, D., Álvarez-Cubela, S., Lanzoni, G., Vargas, N., Prabakar, K.R., Boulina, M., Ricordi, C., Inverardi, L., Pastori, R.L., and Domínguez-Bendala, J. (2015). BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion. Diabetes 64, 4123–4134.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kroon, E., Martinson, L.A., Kadoya, K., Bang, A.G., Kelly, O.G., Eliazer, S., Young, H., Richardson, M., Smart, N.G., Cunningham, J., Agulnick, A.D., D’Amour, K.A., Carpenter, M.K., and Baetge, E.E. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26, 443–452.CrossRefPubMedGoogle Scholar
  41. Lee, J., Sugiyama, T., Liu, Y., Wang, J., Gu, X., Lei, J., Markmann, J.F., Miyazaki, S., Miyazaki, J., Szot, G.L., Bottino, R., and Kim, S.K. (2013). Expansion and conversion of human pancreatic ductal cells into insulinsecreting endocrine cells. ELife 2, e00940.Google Scholar
  42. Lemper, M., De Groef, S., Stangé, G., Baeyens, L., and Heimberg, H. (2016). A combination of cytokines EGF and CNTF protects the functional beta cell mass in mice with short-term hyperglycaemia. Diabetologia 59, 1948–1958.CrossRefPubMedGoogle Scholar
  43. Li, W., Cavelti-Weder, C., Zhang, Y., Clement, K., Donovan, S., Gonzalez, G., Zhu, J., Stemann, M., Xu, K., Hashimoto, T., Yamada, T., Nakanishi, M., Zhang, Y., Zeng, S., Gifford, D., Meissner, A., Weir, G., and Zhou, Q. (2014). Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat Biotechnol 32, 1223–1230.CrossRefPubMedGoogle Scholar
  44. Liu, H., Yang, H., Zhu, D., Sui, X., Li, J., Liang, Z., Xu, L., Chen, Z., Yao, A., Zhang, L., Zhang, X., Yi, X., Liu, M., Xu, S., Zhang, W., Lin, H., Xie, L., Lou, J., Zhang, Y., Xi, J., and Deng, H. (2014). Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells. Cell Res 24, 1181–1200.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Maza, I., Caspi, I., Zviran, A., Chomsky, E., Rais, Y., Viukov, S., Geula, S., Buenrostro, J.D., Weinberger, L., Krupalnik, V., Hanna, S., Zerbib, M., Dutton, J.R., Greenleaf, W.J., Massarwa, R., Novershtern, N., and Hanna, J.H. (2015). Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nat Biotechnol 33, 769–774.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Meivar-Levy, I., Sapir, T., Berneman, D., Weissbach, T., Polak-Charcon, S., Ravassard, P., Tzakis, A.G., Mor, E., Ricordi, C., and Ferber, S. (2011). Human liver cells expressing albumin and mesenchymal characteristics give rise to insulin-producing cells. J Transplant 2011, 1–12.CrossRefGoogle Scholar
  47. Merani, S., Toso, C., Emamaullee, J., and Shapiro, A.M.J. (2008). Optimal implantation site for pancreatic islet transplantation. Br J Surg 95, 1449–1461.CrossRefPubMedGoogle Scholar
  48. Mills, J.C., and Shivdasani, R.A. (2011). Gastric epithelial stem cells. Gastroenterology 140, 412–424.CrossRefPubMedGoogle Scholar
  49. Mojibian, M., Lam, A.W.Y., Fujita, Y., Asadi, A., Grassl, G.A., Dickie, P., Tan, R., Cheung, A.T., and Kieffer, T.J. (2014). Insulin-producing intestinal K cells protect nonobese diabetic mice from autoimmune diabetes. Gastroenterology 147, 162–171.e6.CrossRefPubMedGoogle Scholar
  50. Nair, G., and Hebrok, M. (2015). Islet formation in mice and men: lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells. Curr Opin Genets Dev 32, 171–180.CrossRefGoogle Scholar
  51. Nostro, M.C., and Keller, G. (2012). Generation of beta cells from human pluripotent stem cells: potential for regenerative medicine. Seminars Cell Dev Biol 23, 701–710.CrossRefGoogle Scholar
  52. Nostro, M.C., Sarangi, F., Ogawa, S., Holtzinger, A., Corneo, B., Li, X., Micallef, S.J., Park, I.H., Basford, C., Wheeler, M.B., Daley, G.Q., Elefanty, A.G., Stanley, E.G., and Keller, G. (2011). Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138, 861–871.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nostro, M.C., Sarangi, F., Yang, C., Holland, A., Elefanty, A.G., Stanley, E.G., Greiner, D.L., and Keller, G. (2015). Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Rep 4, 591–604.CrossRefGoogle Scholar
  54. Pagliuca, F.W., Millman, J.R., Gürtler, M., Segel, M., Van Dervort, A., Ryu, J.H., Peterson, Q.P., Greiner, D., and Melton, D.A. (2014). Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pepper, A.R., Gala-Lopez, B., Pawlick, R., Merani, S., Kin, T., and Shapiro, A.M.J. (2015). A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol 33, 518–523.CrossRefPubMedGoogle Scholar
  56. Quaranta, P., Antonini, S., Spiga, S., Mazzanti, B., Curcio, M., Mulas, G., Diana, M., Marzola, P., Mosca, F., Longoni, B., and Chatenoud, L. (2014). Co-transplantation of endothelial progenitor cells and pancreatic islets to induce long-lasting normoglycemia in streptozotocin-treated diabetic rats. PLoS ONE 9, e94783.CrossRefGoogle Scholar
  57. Rahier, J., Guiot, Y., Goebbels, R.M., Sempoux, C., and Henquin, J.C. (2008). Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10, 32–42.CrossRefPubMedGoogle Scholar
  58. Gomez, D.L., O’Driscoll, M., Sheets, T.P., Hruban, R.H., Oberholzer, J., McGarrigle, J.J., Shamblott, M.J., and Rakonczay, Z. (2015). Neurogenin 3 expressing cells in the human exocrine pancreas have the capacity for endocrine cell fate. PLoS ONE 10, e0133862.Google Scholar
  59. Rekittke, N.E., Ang, M., Rawat, D., Khatri, R., and Linn, T. (2016). Regenerative therapy of type 1 diabetes mellitus: from pancreatic islet transplantation to mesenchymal stem cells. Stem Cells Int 2016, 1–22.CrossRefGoogle Scholar
  60. Rezania, A., Bruin, J.E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O'Dwyer, S., Quiskamp, N., Mojibian, M., Albrecht, T., Yang, Y.H.C., Johnson, J.D., and Kieffer, T.J. (2014). Reversal of diabetes with insulinproducing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32, 1121–1133.CrossRefPubMedGoogle Scholar
  61. Rezania, A., Bruin, J.E., Riedel, M.J., Mojibian, M., Asadi, A., Xu, J., Gauvin, R., Narayan, K., Karanu, F., O’Neil, J.J., Ao, Z., Warnock, G.L., and Kieffer, T.J. (2012). Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating preexisting diabetes in mice. Diabetes 61, 2016–2029.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Russ, H.A., Parent, A.V., Ringler, J.J., Hennings, T.G., Nair, G.G., Shveygert, M., Guo, T., Puri, S., Haataja, L., Cirulli, V., Blelloch, R., Szot, G.L., Arvan, P., and Hebrok, M. (2015). Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro.Google Scholar
  63. EMBO J 34, 1759–1772.Google Scholar
  64. Sakata, N., Aoki, T., Yoshimatsu, G., Tsuchiya, H., Hata, T., Katayose, Y., Egawa, S., and Unno, M. (2014). Strategy for clinical setting in intramuscular and subcutaneous islet transplantation. Diabetes Metab Res Rev 30, 1–10.CrossRefPubMedGoogle Scholar
  65. Sangan, C.B., Jover, R., Heimberg, H., and Tosh, D. (2015). In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression. Mol Cell Endocrinol 399, 50–59.CrossRefPubMedGoogle Scholar
  66. Sapir, T., Shternhall, K., Meivar-Levy, I., Blumenfeld, T., Cohen, H., Skutelsky, E., Eventov-Friedman, S., Barshack, I., Goldberg, I., Pri-Chen, S., Ben-Dor, L., Polak-Charcon, S., Karasik, A., Shimon, I., Mor, E., and Ferber, S. (2005). Cell-replacement therapy for diabetes: generating functional insulin-producing tissue from adult human liver cells. Proc Natl Acad Sci USA 102, 7964–7969.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Scharp, D.W., Swanson, C.J., Olack, B.J., Latta, P.P., Hegre, O.D., Doherty, E.J., Gentile, F.T., Flavin, K.S., Ansara, M.F., and Lacy, P.E. (1994). Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type IIdiabetes and in nondiabetic control subjects. Diabetes 43, 1167–1170.CrossRefPubMedGoogle Scholar
  68. Scholin, A., Bjorklund, L., Borg, H., Arnqvist, H., Bjork, E., Blohme, G., Bolinder, J., Eriksson, J.W., Gudbjornsdottir, S., Nystrom, L., Ostman, J., Karlsson, A.F., and Sundkvist, G. (2004). Islet antibodies and remaining beta-cell function 8 years after diagnosis of diabetes in young adults: a prospective follow-up of the nationwide Diabetes Incidence Study in Sweden. J Intern Med 255, 384–391.CrossRefPubMedGoogle Scholar
  69. Schulz, T.C., Young, H.Y., Agulnick, A.D., Babin, M.J., Baetge, E.E., Bang, A.G., Bhoumik, A., Cepa, I., Cesario, R.M., Haakmeester, C., Kadoya, K., Kelly, J.R., Kerr, J., Martinson, L.A., McLean, A.B., Moorman, M.A., Payne, J.K., Richardson, M., Ross, K.G., Sherrer, E.S., Song, X., Wilson, A.Z., Brandon, E.P., Green, C.E., Kroon, E.J., Kelly, O.G., D’Amour, K.A., Robins, A.J., and Lynn, F.C. (2012). A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS ONE 7, e37004.CrossRefGoogle Scholar
  70. Shapiro, A.M.J., Lakey, J.R.T., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M., and Rajotte, R.V. (2000). Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343, 230–238.CrossRefPubMedGoogle Scholar
  71. Shen, W., Tremblay, M.S., Deshmukh, V.A., Wang, W., Filippi, C.M., Harb, G., Zhang, Y., Kamireddy, A., Baaten, J.E., Jin, Q., Wu, T., Swoboda, J.G., Cho, C.Y., Li, J., Laffitte, B.A., McNamara, P., Glynne, R., Wu, X., Herman, A.E., and Schultz, P.G. (2013). Small-molecule inducer of β cell proliferation identified by high-throughput screening. J Am Chem Soc 135, 1669–1672.CrossRefPubMedGoogle Scholar
  72. Shi, Y., and Hu, F.B. (2014). The global implications of diabetes and cancer. Lancet 383, 1947–1948.CrossRefPubMedGoogle Scholar
  73. Shiba, Y., Fernandes, S., Zhu, W.Z., Filice, D., Muskheli, V., Kim, J., Palpant, N.J., Gantz, J., Moyes, K.W., Reinecke, H., Van Biber, B., Dardas, T., Mignone, J.L., Izawa, A., Hanna, R., Viswanathan, M., Gold, J.D., Kotlikoff, M.I., Sarvazyan, N., Kay, M.W., Murry, C.E., and Laflamme, M.A. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489, 322–325.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.CrossRefPubMedGoogle Scholar
  75. Takahashi, K., and Yamanaka, S. (2016). A decade of transcription factormediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17, 183–193.CrossRefPubMedGoogle Scholar
  76. Talchai, C., Xuan, S., Kitamura, T., DePinho, R.A., and Accili, D. (2012). Generation of functional insulin-producing cells in the gut by Foxo1 ablation. Nat Genet 44, 406–412.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tang, D.Q., Cao, L.Z., Chou, W., Shun, L., Farag, C., Atkinson, M.A., Li, S.W., Chang, L.J., and Yang, L.J. (2006). Role of Pax4 in Pdx1-VP16- mediated liver-to-endocrine pancreas transdifferentiation. Lab Invest 86, 829–841.CrossRefPubMedGoogle Scholar
  78. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.CrossRefPubMedGoogle Scholar
  79. Thorel, F., Népote, V., Avril, I., Kohno, K., Desgraz, R., Chera, S., and Herrera, P.L. (2010). Conversion of adult pancreatic a-cells to β-cells after extreme b-cell loss. Nature 464, 1149–1154.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Vegas, A.J., Veiseh, O., Gürtler, M., Millman, J.R., Pagliuca, F.W., Bader, A.R., Doloff, J.C., Li, J., Chen, M., Olejnik, K., Tam, H.H., Jhunjhunwala, S., Langan, E., Aresta-Dasilva, S., Gandham, S., McGarrigle, J.J., Bochenek, M.A., Hollister-Lock, J., Oberholzer, J., Greiner, D.L., Weir, G.C., Melton, D.A., Langer, R., and Anderson, D.G. (2016). Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 22, 306–311.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wahoff, D.C., Hower, C.D., Sutherland, D.E., Leone, J.P., and Gores, P.F. (1994). The peritoneal cavity: an alternative site for clinical islet transplantation? Transplant Proc 26, 3297–3298.PubMedGoogle Scholar
  82. Wang, Q., Wang, H., Sun, Y., Li, S.W., Donelan, W., Chang, L.J., Jin, S., Terada, N., Cheng, H., Reeves, W.H., and Yang, L.J. (2013). The reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation. J Cell Sci 126, 3638–3648.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Xie, R., Everett, L.J., Lim, H.W., Patel, N.A., Schug, J., Kroon, E., Kelly, O.G., Wang, A., D’Amour, K.A., Robins, A.J., Won, K.J., Kaestner, K.H., and Sander, M. (2013). Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell 12, 224–237.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Xu, G., Stoffers, D.A., Habener, J.F., and Bonner-Weir, S. (1999). Exendin- 4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48, 2270–2276.CrossRefPubMedGoogle Scholar
  85. Yang, Y.P., Thorel, F., Boyer, D.F., Herrera, P.L., and Wright, C.V.E. (2011). Context-specific a- to-β-cell reprogramming by forced Pdx1 expression. Genes Dev 25, 1680–1685.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yatoh, S., Akashi, T., Chan, P.P., Kaneto, H., Sharma, A., Bonner-Weir, S., and Weir, G.C. (2007). NeuroD and reaggregation induce β-cell specific gene expression in cultured hepatocytes. Diabetes Metab Res Rev 23, 239–249.CrossRefPubMedGoogle Scholar
  87. Zhang, L., Cao, Z., Bai, T., Carr, L., Ella-Menye, J.R., Irvin, C., Ratner, B.D., and Jiang, S. (2013). Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 31, 553–556.CrossRefPubMedGoogle Scholar
  88. Zhao, Z., Abdolazimi, Y., Armstrong, N.A., and Annes, J.P. (2016). A highcontent in vitro pancreatic islet β-cell replication discovery platform. J Vis Exp doi: 10.3791/54298.Google Scholar
  89. Zhao, Z., Low, Y.S., Armstrong, N.A., Ryu, J.H., Sun, S.A., Arvanites, A.C., Hollister-Lock, J., Shah, N.H., Weir, G.C., and Annes, J.P. (2014). Repurposing cAMP-modulating medications to promote β-cell replication. Mol Endocrinol 28, 1682–1697.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., and Melton, D.A. (2008). In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455, 627–632.CrossRefPubMedGoogle Scholar
  91. Zhu, S., Russ, H.A., Wang, X., Zhang, M., Ma, T., Xu, T., Tang, S., Hebrok, M., and Ding, S. (2016). Human pancreatic beta-like cells converted from fibroblasts. Nat Commun 7, 10080.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical BiologyPeking University School of Pharmaceutical SciencesBeijingChina
  2. 2.Department of Stem Cell and Regenerative Biology, Harvard Stem Cell InstituteHarvard UniversityCambridgeUSA

Personalised recommendations