Advertisement

Science China Life Sciences

, Volume 57, Issue 3, pp 327–335 | Cite as

Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat

  • Jia Luo
  • Tao Wang
  • Shan Liang
  • Xu Hu
  • Wei Li
  • Feng Jin
Open Access
Research Paper

Abstract

Evidence suggests that the hyperammonemia (HA)-induced neuroinflammation and alterations in the serotonin (5-HT) system may contribute to cognitive decline and anxiety disorder during hepatic encephalopathy (HE). Probiotics that maintain immune system homeostasis and regulate the 5-HT system may be potential treatment for HA-mediated neurological disorders in HE. In this study, we tested the efficacy of probiotic Lactobacillus helveticus strain NS8 in preventing cognitive decline and anxiety-like behavior in HA rats. Chronic HA was induced by intraperitoneal injection of ammonium acetate for four weeks in male Sprague-Dawley rats. HA rats were then given Lactobacillus helveticus strain NS8 (109 CFU mL−1) in drinking water as a daily supplementation. The Morris water maze task assessed cognitive function, and the elevated plus maze test evaluated anxiety-like behavior. Neuroinflammation was assessed by measuring the inflammatory markers: inducible nitric oxide synthase, prostaglandin E2, and interleukin-1 β in the brain. 5-HT system activity was evaluated by measuring 5-HT and its metabolite, 5-HIAA, and the 5-HT precursor, tryptophan. Probiotic treatment of HA rats significantly reduced the level of inflammatory markers, decreased 5-HT metabolism, restored cognitive function and improved anxiety-like behavior. These results indicate that probiotic L. helveticus strain NS8 is beneficial for the treatment of cognitive decline and anxiety-like behavior in HA rats.

Keywords

hyperammonemia probiotics cognition anxiety neuroinflammation serotonin 

References

  1. 1.
    Rodrigo R, Cauli O, Gomez-Pinedo U, Agusti A, Hernandez-Rabaza V, Garcia-Verdugo JM, Felipo V. Hyperammonemia induces neuro-inflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology, 2010, 139: 675–684PubMedCrossRefGoogle Scholar
  2. 2.
    Saul WSWB. Hyperammonemic encephalopathy. Medicine (Abingdon), 2002, 81: 240–249Google Scholar
  3. 3.
    Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol, 2002, 67: 259–279PubMedCrossRefGoogle Scholar
  4. 4.
    Lajtha A, Reith MEA, eds. Handbook of Neurochemistry and Molecular Neurobiology. 3rd ed. New York: Springer, 2008Google Scholar
  5. 5.
    Basile AS, Jones EA. Ammonia and GABA-ergic neurotransmission: Interrelated factors in the pathogenesis of hepatic encephalopathy. Hepatology, 1997, 25: 1303–1305PubMedCrossRefGoogle Scholar
  6. 6.
    Montoliu C, Piedrafita B, Serra MA, del Olmo JA, Urios A, Rodrigo JM, Felipo V. IL-6 and IL-18 in blood may discriminate cirrhotic patients with and without minimal hepatic encephalopathy. J Clin Gastroenterol, 2009, 43: 272–279PubMedCrossRefGoogle Scholar
  7. 7.
    Gibertini M, Newton C, Friedman H, Klein TW. Spatial learning impairment in mice infected with legionella pneumophila or administered exogenous interleukin-1β. Brain Behav Immun, 1995, 9: 113–128PubMedCrossRefGoogle Scholar
  8. 8.
    Wiltfang J, Nolte W, Weißenborn K, Komhuber J, Rüther E. Psychiatric aspects of portal-systemic encephalopathy. Metab Brain Dis, 1998, 13: 379–389PubMedCrossRefGoogle Scholar
  9. 9.
    Erecinska M, Pastuszko A, Wilson DF, Nelson D. Ammonia-induced release of neurotransmitters from rat brain synaptosomes: differences between the effects on amines and amino acids. J Neurochem, 1987, 49: 1258–1265PubMedCrossRefGoogle Scholar
  10. 10.
    Rössle M, Luft M, Herz R, Klein B, Lehmann M, Gerok W. Amino acid, ammonia and neurotransmitter concentrations in hepatic encephalopathy: serial analysis in plasma and cerebrospinal fluid during treatment with an adapted amino acid solution. Klin Wochenschr, 1984, 62: 867–875PubMedCrossRefGoogle Scholar
  11. 11.
    Murphy DL, Moya PR, Fox MA, Rubenstein LM, Wendland JR, Timpano KR. Anxiety and affective disorder comorbidity related to serotonin and other neurotransmitter systems: obsessive-compulsive disorder as an example of overlapping clinical and genetic heterogeneity. Philos Trans R Soc Lond B Biol Sci, 2013, 368: 20120435PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bergqvist PBF, Hjorth S, Audet RM, Apelqvist G, Bengtsson F, Butterworth RF. Ammonium acetate challenge in experimental chronic hepatic encephalopathy induces a transient increase of brain 5-HT release in vivo. Eur Neuropsychopharm, 1996, 6: 317–322CrossRefGoogle Scholar
  13. 13.
    Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T. A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress, 2008, 11: 198–209PubMedCrossRefGoogle Scholar
  14. 14.
    Vignau J, Costisella O, Canva V, Imbenotte M, Duhamel A, Lhermitte M. Impact of interferon alpha immunotherapy on tryptophan metabolism in patients with chronic hepatitis C. Results of a pilot studies on ten patients. Encephale, 2009, 35: 477–483PubMedCrossRefGoogle Scholar
  15. 15.
    Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR. Peripheral and cerebral metabolic abnormalities of the tryptophan-kynurenine pathway in a murine model of major depression. Behav Brain Res, 2010, 210: 84–91PubMedCrossRefGoogle Scholar
  16. 16.
    Butterworth RF, Norenberg MD, Felipo V, Ferenci P, Albrecht J, Blei AT, Members of the ICoEMoHE. Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int, 2009, 29: 783–788PubMedCrossRefGoogle Scholar
  17. 17.
    Lena PJ, Subramanian P. Effects of melatonin on the levels of antioxidants and lipid peroxidation products in rats treated with ammonium acetate. Pharmazie, 2004, 59: 636–639PubMedGoogle Scholar
  18. 18.
    Moroni F, Lombardi G, Moneti G, Cortesini C. The release and neosynthesis of glutamic acid are increased in experimental models of hepatic encephalopathy. J Neurochem, 1983, 40: 850–854PubMedCrossRefGoogle Scholar
  19. 19.
    Subash S, Subramanian P. Morin a flavonoid exerts antioxidant potential in chronic hyperammonemic rats: a biochemical and histopathological study. Mol Cell Biochem, 2009, 327: 153–161PubMedCrossRefGoogle Scholar
  20. 20.
    Bajaj JS, Sanyal AJ, Bell D, Gilles H, Heuman DM. Predictors of the recurrence of hepatic encephalopathy in lactulose-treated patients. Aliment Pharm Therap, 2010, 31: 1012–1017CrossRefGoogle Scholar
  21. 21.
    Flamm SL. Rifaximin treatment for reduction of risk of overt hepatic encephalopathy recurrence. Therap Adv Gastroenterol, 2011, 4: 199–206PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nicaise C, Prozzi D, Viaene E, Moreno C, Gustot T, Quertinmont E, Demetter P, Suain V, Goffin P, Devière J, Hols P. Control of acute, chronic, and constitutive hyperammonemia by wild-type and genetically engineered Lactobacillus plantarum in rodents. Hepatology, 2008, 48: 1184–1192PubMedCrossRefGoogle Scholar
  23. 23.
    Isolauri E, Sütas Y, Kankaanp P, Arvilommi H, Salminen S. Probiotics: effects on immunity. Am J Clin Nutr, 2001, 73: 444S–450SPubMedGoogle Scholar
  24. 24.
    Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science, 2000, 289: 1352–1355PubMedCrossRefGoogle Scholar
  25. 25.
    Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiat Res, 2008, 43: 164–174PubMedCrossRefGoogle Scholar
  26. 26.
    Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, MacQueen G, Sherman PM. Bacterial infection causes stress-induced memory dysfunction in mice. Gut, 2011, 60: 307–317PubMedCrossRefGoogle Scholar
  27. 27.
    Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr, 2007, 61: 355–361PubMedCrossRefGoogle Scholar
  28. 28.
    Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog, 2009, 1: 6PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA, 2011, 108: 16050–16055PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Joo HM, Kim KA, Myoung KS, Ahn YT, Lee JH, Huh CS, Han MJ, Kim DH. Lactobacillus helveticus HY7801 ameliorates vulvovaginal candidiasis in mice by inhibiting fungal growth and NF-κB activation. Int Immunopharmacol, 2012, 14: 39–46PubMedCrossRefGoogle Scholar
  31. 31.
    Ohland CL, Kish L, Bell H, Thiesen A, Hotte N, Pankiv E, Madsen KL. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology, 2013, 38:1738–1747PubMedCrossRefGoogle Scholar
  32. 32.
    Gokcimen A, Kocak A, Gulle K, Sutcu R, Elmas O, Caliskan S, Ozguner F. The effects of allopurinol on rat liver and spleen tissues in a chronic hyperammonemia animal model. Saudi Med J, 2007, 28: 1648–1653PubMedGoogle Scholar
  33. 33.
    Sgouras D, Maragkoudakis P, Petraki K, Martinez-Gonzalez B, Eriotou E, Michopoulos S, Kalantzopoulos G, Tsakalidou E, Mentis A. In vitro and in vivo inhibition of helicobacter pylori by lactobacillus casei strain shirota. Appl Environ Microb, 2004, 70: 518–526CrossRefGoogle Scholar
  34. 34.
    Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protocols, 2007, 2: 322–328PubMedCrossRefGoogle Scholar
  35. 35.
    Wolfer DP, Stagljar-Bozicevic M, Errington ML, Lipp HP. Spatial memory and learning in transgenic mice: fact or artifact? Physiology, 1998, 13: 118–123Google Scholar
  36. 36.
    Monfort P, Cauli O, Montoliu C, Rodrigo R, Llansola M, Piedrafita B, el Mlili N, Boix J, Agustí A, Felipo V. Mechanisms of cognitive alterations in hyperammonemia and hepatic encephalopathy: therapeutical implications. Neurochem Int, 2009, 55: 106–112PubMedCrossRefGoogle Scholar
  37. 37.
    Reznikov L, Fadel J, Reagan L. Glutamate-mediated neuroplasticity deficits in mood disorders. Neuroplasticity, 2009, 13-26Google Scholar
  38. 38.
    Cauli O, Rodrigo R, Piedrafita B, Boix J, Felipo V. Inflammation and hepatic encephalopathy: Ibuprofen restores learning ability in rats with portacaval shunts. Hepatology, 2007, 46: 514–519PubMedCrossRefGoogle Scholar
  39. 39.
    Khasnavis S, Jana A, Roy A, Wood T, Ghosh S, Watson R, Pahan K. Suppression of nuclear factor-?B activation and inflammation in microglia by a physically-modified saline. J Biol Chem, 2012, 287: 29529–29542PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Riedel CU, Foata F, Philippe D, Adolfsson O, Eikmanns BJ, Blum S. Anti-inflammatory effects of bifidobacteria by inhibition of LPS-induced NF-κB activation. World J Gastroenterol, 2006, 12: 3729–3735PubMedPubMedCentralGoogle Scholar
  41. 41.
    Enck P, Klosterhalfen S, Martens U. Probiotic therapy for irritable bowel syndrome. Dtsch Med Wochenschr, 2011, 136: 371–375PubMedCrossRefGoogle Scholar
  42. 42.
    Laugeray A, Launay JM, Callebert J, Surget A, Belzung C, Barone PR. Evidence for a key role of the peripheral kynurenine pathway in the modulation of anxiety- and depression-like behaviours in mice: focus on individual differences. Pharmacol Biochem Be, 2011, 98: 161–168CrossRefGoogle Scholar
  43. 43.
    Iversen SD. 5-HT and anxiety. 1984, 23: 1553–1560Google Scholar
  44. 44.
    Jennings KA, Loder MK, Sheward WJ, Pei Q, Deacon RMJ, Benson MA, Olverman HJ, Hastie ND, Harmar AJ, Shen S, Sharp T. Increased expression of the 5-HT transporter confers a low-anxiety phenotype linked to decreased 5-HT transmission. J Neurosci, 2006, 26: 8955–8964PubMedCrossRefGoogle Scholar
  45. 45.
    Dejong CH, van de Poll MC, Soeters PB, Jalan R, Olde Damink SW. Aromatic amino acid metabolism during liver failure. J Nutr, 2007, 137: 1579S–1585SPubMedGoogle Scholar
  46. 46.
    O’Connor JC, André C, Wang Y, Lawson MA, Szegedi SS, Lestage J, Castanon N, Kelley KW, Dantzer R. Interferon-γ and tumor necrosis factor-α mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus calmette-guérin. J Neurosci, 2009, 29: 4200–4209PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Däubener W, Schmidt SK, Heseler K, Spekker KH, MacKenzie CR. Antimicrobial and immunoregulatory effector mechanisms in human endothelial cells. Indoleamine 2,3-dioxygenase versus inducible nitric oxide synthase. Thromb Haemost, 2009, 102: 1110–1116PubMedGoogle Scholar
  48. 48.
    Gurtner GJ, Newberry RD, Schloemann SR, McDonald KG, Stenson WF. Inhibition of indoleamine 2,3-dioxygenase augments trinitrobenzene sulfonic acid colitis in mice. Gastroenterology, 2003, 125: 1762–1773PubMedCrossRefGoogle Scholar
  49. 49.
    Forsythe P, Inman MD, Bienenstock J. Oral treatment with live Lactobacillus reuteri inhibits the allergic airway response in mice. Am J Respir Crit Care Med, 2007, 15: 561–569CrossRefGoogle Scholar
  50. 50.
    Valladares R, Bojilova L, Potts AH, Cameron E, Gardner C, Lorca G, Gonzalez CF. Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB J, 2013, 27: 1711–1720PubMedCrossRefGoogle Scholar
  51. 51.
    Wu HQ, Pereira ER, Bruno J, Pellicciari R, Albuquerque E, Schwarcz R. The astrocyte-derived α7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex. J Mol Neurosci, 2010, 40: 204–210PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cortese BM, Mitchell TR, Galloway MP, Prevost KE, Fang J, Moore GJ, Uhde TW. Region-specific alteration in brain glutamate: possible relationship to risk-taking behavior. Physiol Behav, 2010, 99: 445–450PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Jia Luo
    • 1
    • 2
  • Tao Wang
    • 1
  • Shan Liang
    • 1
    • 2
  • Xu Hu
    • 1
  • Wei Li
    • 1
    • 2
  • Feng Jin
    • 1
  1. 1.Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations