Skip to main content

Immunosenescence and age-related viral diseases

Abstract

Immunosenescence is described as a decline in the normal functioning of the immune system associated with physiologic ageing. Immunosenescence contributes to reduced efficacy to vaccination and increased susceptibility to infectious diseases in the elderly. Extensive studies of laboratory animal models of ageing or donor lymphocyte analysis have identified changes in immunity caused by the ageing process. Most of these studies have identified phenotypic and functional changes in innate and adaptive immunity. However, it is unclear which of these defects are critical for impaired immune defense against infection. This review describes the changes that occur in innate and adaptive immunity with ageing and some age-related viral diseases where defects in a key component of immunity contribute to the high mortality rate in mouse models of ageing.

References

  1. Aspinall R, Del Giudice G, Effros R B, et al. Challenges for vaccination in the elderly. Immun Ageing, 2007, 4: 9

    PubMed  PubMed Central  Article  Google Scholar 

  2. Ongradi J, Stercz B, Kovesdi V, et al. Immunosenescence and vaccination of the elderly II. New strategies to restore age-related immune impairment. Acta Microbiol Immunol Hung, 2009, 56: 301–312

    PubMed  CAS  Article  Google Scholar 

  3. Andrews N P, Fujii H, Goronzy J J, et al. Telomeres and immunological diseases of aging. Gerontology, 2010, 56: 390–403

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  4. Bernstein E, Kaye D, Abrutyn E, et al. Immune response to influenza vaccination in a large healthy elderly population. Vaccine, 1999, 17: 82–94

    PubMed  CAS  Article  Google Scholar 

  5. Weinberger B, Herndler-Brandstetter D, Schwanninger A, et al. Biology of immune responses to vaccines in elderly persons. Clin Infect Dis, 2008, 46: 1078–1084

    PubMed  Article  Google Scholar 

  6. Moon J J, Chu H H, Pepper M, et al. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity, 2007, 27: 203–213

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  7. Naylor K, Li G, Vallejo A N, et al. The influence of age on T cell generation and TCR diversity. J Immunol, 2005, 174: 7446–7452

    PubMed  CAS  Article  Google Scholar 

  8. Leng S X. Role of chronic cytomegalovirus infection in T-cell immunosenescence and frailty: more questions than answers. J Am Geriatr Soc, 2011, 59: 2363–2365

    PubMed  Article  Google Scholar 

  9. Voehringer D, Koschella M, Pircher H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood, 2002, 100: 3698–3702

    PubMed  CAS  Article  Google Scholar 

  10. LeMaoult J, Messaoudi I, Manavalan J S, et al. Age-related dysregulation in CD8 T cell homeostasis: kinetics of a diversity loss. J Immunol, 2000, 165: 2367–2373

    PubMed  CAS  Article  Google Scholar 

  11. Yager E J, Ahmed M, Lanzer K, et al. Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med, 2008, 205: 711–723

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  12. Pawelec G, Akbar A, Beverley P, et al. Immunosenescence and Cytomegalovirus: where do we stand after a decade? Immun Ageing, 2010, 7: 13

    PubMed  PubMed Central  Article  Google Scholar 

  13. Pawelec G, Akbar A, Caruso C, et al. Is immunosenescence infectious? Trends Immunol, 2004, 25: 406–410

    PubMed  CAS  Article  Google Scholar 

  14. Vasto S, Colonna-Romano G, Larbi A, et al. Role of persistent CMV infection in configuring T cell immunity in the elderly. Immun Ageing, 2007, 4: 2

    PubMed  PubMed Central  Article  Google Scholar 

  15. Barrett L, Fowke K R, Grant M D. Cytomegalovirus, aging, and HIV: a perfect storm. AIDS Rev, 2012, 14: 159–167

    PubMed  Google Scholar 

  16. Akbar A N, Fletcher J M. Memory T cell homeostasis and senescence during aging. Curr Opin Immunol, 2005, 17: 480–485

    PubMed  CAS  Article  Google Scholar 

  17. Almanzar G, Schwaiger S, Jenewein B, et al. Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J Virol, 2005, 79: 3675–3683

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  18. Khan N, Hislop A, Gudgeon N, et al. Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol, 2004, 173: 7481–7489

    PubMed  CAS  Article  Google Scholar 

  19. Zhong S, Zheng H Y, Suzuki M, et al. Age-related urinary excretion of BK polyomavirus by nonimmunocompromised individuals. J Clin Microbiol, 2007, 45: 193–198

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  20. Decman V, Laidlaw B J, Dimenna L J, et al. Cell-intrinsic defects in the proliferative response of antiviral memory CD8 T cells in aged mice upon secondary infection. J Immunol, 2010, 184: 5151–5159

    PubMed  CAS  Article  Google Scholar 

  21. Naumova E, Ivanova M, Pawelec G. Immunogenetics of ageing. Int J Immunogenet, 2011, 38: 373–381

    PubMed  CAS  Article  Google Scholar 

  22. Vallejo A N. Age-dependent alterations of the T cell repertoire and functional diversity of T cells of the aged. Immunol Res, 2006, 36: 221–228

    PubMed  CAS  Article  Google Scholar 

  23. Aw D, Palmer D B. The origin and implication of thymic involution. Aging Dis, 2011, 2: 437–443

    PubMed  PubMed Central  Google Scholar 

  24. Goronzy J J, Weyand C M. T cell development and receptor diversity during aging. Curr Opin Immunol, 2005, 17: 468–475

    PubMed  CAS  Article  Google Scholar 

  25. Effros R B, Dagarag M, Spaulding C, et al. The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev, 2005, 205: 147–157

    PubMed  CAS  Article  Google Scholar 

  26. Frasca D, Diaz A, Romero M, et al. Age effects on B cells and humoral immunity in humans. Ageing Res Rev, 2011, 10: 330–335

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  27. Frasca D, Blomberg B B. Effects of aging on B cell function. Curr Opin Immunol, 2009, 21: 425–430

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  28. Paganelli R, Quinti I, Fagiolo U, et al. Changes in circulating B cells and immunoglobulin classes and subclasses in a healthy aged population. Clin Exp Immunol, 1992, 90: 351–354

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  29. Mehr R, Melamed D. Reversing B cell aging. Aging, 2011, 3: 438–443

    PubMed  PubMed Central  Google Scholar 

  30. LeMaoult J, Szabo P, Weksler M E. Effect of age on humoral immunity, selection of the B-cell repertoire and B-cell development. Immunol Rev, 1997, 160: 115–126

    PubMed  CAS  Article  Google Scholar 

  31. Shi Y, Yamazaki T, Okubo Y, et al. Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol, 2005, 175: 3262–3267

    PubMed  CAS  Article  Google Scholar 

  32. Frasca D, Riley R L, Blomberg B B. Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin Immunol, 2005, 17: 378–384

    PubMed  CAS  Article  Google Scholar 

  33. Van der Put E, Sherwood E M, Blomberg B B, et al. Aged mice exhibit distinct B cell precursor phenotypes differing in activation, proliferation and apoptosis. Exp Gerontol, 2003, 38: 1137–1147

    PubMed  Article  Google Scholar 

  34. LeBien T W, Tedder T F. B lymphocytes: how they develop and function. Blood, 2008, 112: 1570–1580

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  35. Bernasconi N L, Traggiai E, Lanzavecchia A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science, 2002, 298: 2199–2202

    PubMed  CAS  Article  Google Scholar 

  36. Seifert M, Kuppers R. Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell generation. J Exp Med, 2009, 206: 2659–2669

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  37. Macallan D C, Wallace D L, Zhang Y, et al. B-cell kinetics in humans: rapid turnover of peripheral blood memory cells. Blood, 2005, 105: 3633–3640

    PubMed  CAS  Article  Google Scholar 

  38. Frasca D, Diaz A, Romero M, et al. Intrinsic defects in B cell response to seasonal influenza vaccination in elderly humans. Vaccine, 2010, 28: 8077–8084

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  39. Johnson S A, Cambier J C. Ageing, autoimmunity and arthritis: senescence of the B cell compartment-implications for humoral immunity. Arthritis Res Ther, 2004, 6: 131–139

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  40. Lazuardi L, Jenewein B, Wolf A M, et al. Age-related loss of naive T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. Immunology, 2005, 114: 37–43

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  41. Ginaldi L, De Martinis M, D’Ostilio A, et al. The immune system in the elderly: III. Innate immunity. Immunol Res, 1999, 20: 117–126

    PubMed  CAS  Article  Google Scholar 

  42. Panda A, Arjona A, Sapey E, et al. Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol, 2009, 30: 325–333

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  43. Cooper M A, Fehniger T A, Caligiuri M A. The biology of human natural killer-cell subsets. Trends Immunol, 2001, 22: 633–640

    PubMed  CAS  Article  Google Scholar 

  44. Lanier L L. NK cell recognition. Annu Rev Immunol, 2005, 23: 225–274

    PubMed  CAS  Article  Google Scholar 

  45. Robertson M J, Ritz J. Biology and clinical relevance of human natural killer cells. Blood, 1990, 76: 2421–2438

    PubMed  CAS  Google Scholar 

  46. Lanier L L, Testi R, Bindl J, et al. Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J Exp Med, 1989, 169: 2233–2238

    PubMed  CAS  Article  Google Scholar 

  47. Campbell J J, Qin S, Unutmaz D, et al. Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol, 2001, 166: 6477–6482

    PubMed  CAS  Article  Google Scholar 

  48. Nagler A, Lanier L L, Phillips J H. Constitutive expression of high affinity interleukin 2 receptors on human CD16-natural killer cells in vivo. J Exp Med, 1990, 171: 1527–1533

    PubMed  CAS  Article  Google Scholar 

  49. Robertson M J, Soiffer R J, Wolf S F, et al. Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J Exp Med, 1992, 175: 779–788

    PubMed  CAS  Article  Google Scholar 

  50. Sansoni P, Cossarizza A, Brianti V, et al. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood, 1993, 82: 2767–2773

    PubMed  CAS  Google Scholar 

  51. Thompson J S, Wekstein D R, Rhoades J L, et al. The immune status of healthy centenarians. J Am Geriatr Soc, 1984, 32: 274–281

    PubMed  CAS  Article  Google Scholar 

  52. Burkle A, Caselli G, Franceschi C, et al. Pathophysiology of ageing, longevity and age related diseases. Immun Ageing, 2007, 4: 4

    PubMed  PubMed Central  Article  Google Scholar 

  53. Miyaji C, Watanabe H, Toma H, et al. Functional alteration of granulocytes, NK cells, and natural killer T cells in centenarians. Hum Immunol, 2000, 61: 908–916

    PubMed  CAS  Article  Google Scholar 

  54. Vitale M, Zamai L, Neri L M, et al. The impairment of natural killer function in the healthy aged is due to a postbinding deficient mechanism. Cell Immunol, 1992, 145: 1–10

    PubMed  CAS  Article  Google Scholar 

  55. Solana R, Tarazona R, Gayoso I, et al. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol, 2012, 24: 331–341

    PubMed  CAS  Article  Google Scholar 

  56. Borrego F, Alonso M C, Galiani M D, et al. NK phenotypic markers and IL2 response in NK cells from elderly people. Exp Gerontol, 1999, 34: 253–265

    PubMed  CAS  Article  Google Scholar 

  57. Ogata K, Yokose N, Tamura H, et al. Natural killer cells in the late decades of human life. Clin Immunol Immunopathol, 1997, 84: 269–275

    PubMed  CAS  Article  Google Scholar 

  58. Simpson R J, Lowder T W, Spielmann G, et al. Exercise and the aging immune system. Ageing Res Rev, 2012, 11: 404–420

    PubMed  CAS  Article  Google Scholar 

  59. Farag S S, Fehniger T, Ruggeri L, et al. Natural killer cells: biology and application in stem-cell transplantation. Cytotherapy, 2002, 4: 445–446

    PubMed  CAS  Article  Google Scholar 

  60. Sconocchia G, Lau M, Provenzano M, et al. The antileukemia effect of HLA-matched NK and NK-T cells in chronic myelogenous leukemia involves NKG2D-target-cell interactions. Blood, 2005, 106: 3666–3672

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  61. Verheyden S, Ferrone S, Mulder A, et al. Role of the inhibitory KIR ligand HLA-Bw4 and HLA-C expression levels in the recognition of leukemic cells by Natural Killer cells. Cancer Immunol Immunother, 2009, 58: 855–865

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  62. Lutz C T, Moore M B, Bradley S, et al. Reciprocal age related change in natural killer cell receptors for MHC class I. Mech Ageing Dev, 2005, 126: 722–731

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  63. Lemster B H, Michel J J, Montag D T, et al. Induction of CD56 and TCR-independent activation of T cells with aging. J Immunol, 2008, 180: 1979–1990

    PubMed  CAS  Article  Google Scholar 

  64. Abedin S, Michel J J, Lemster B, et al. Diversity of NKR expression in aging T cells and in T cells of the aged: the new frontier into the exploration of protective immunity in the elderly. Exp Gerontol, 2005, 40: 537–548

    PubMed  CAS  Article  Google Scholar 

  65. Almeida-Oliveira A, Smith-Carvalho M, Porto L C, et al. Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol, 2011, 72: 319–329

    PubMed  CAS  Article  Google Scholar 

  66. Le Garff-Tavernier M, Beziat V, Decocq J, et al. Human NK cells display major phenotypic and functional changes over the life span. Aging cell, 2010, 9: 527–535

    PubMed  Article  Google Scholar 

  67. Solana R, Mariani E. NK and NK/T cells in human senescence. Vaccine, 2000, 18: 1613–1620

    PubMed  CAS  Article  Google Scholar 

  68. Krishnaraj R, Bhooma T. Cytokine sensitivity of human NK cells during immunosenescence. 2. IL 2-induced interferon gamma secretion, Immunol Lett, 1996, 50: 59–63

    PubMed  CAS  Article  Google Scholar 

  69. Mariani E, Pulsatelli L, Neri S, et al. RANTES and MIP-1alpha production by T lymphocytes, monocytes and NK cells from nonagenarian subjects. Exp Gerontol, 2002, 37: 219–226

    PubMed  CAS  Article  Google Scholar 

  70. Mocchegiani E, Giacconi R, Cipriano C, et al. The variations during the circadian cycle of liver CD1d-unrestricted NK1.1+TCR gamma/ delta+ cells lead to successful ageing. Role of metallothionein/ IL-6/gp130/PARP-1 interplay in very old mice. Exp Gerontol, 2004, 39: 775–788

    PubMed  CAS  Article  Google Scholar 

  71. Kaszubowska L, Kaczor J J, Hak L, et al. Sensitivity of natural killer cells to activation in the process of ageing is related to the oxidative and inflammatory status of the elderly. J Physiol Pharmacol, 2011, 62: 101–109

    PubMed  CAS  Google Scholar 

  72. Mocchegiani E, Muzzioli M, Giacconi R, et al. Metallothioneins/PARP-1/IL-6 interplay on natural killer cell activity in elderly: parallelism with nonagenarians and old infected humans. Effect of zinc supply. Mech Ageing Dev, 2003, 124: 459–468

    PubMed  CAS  Article  Google Scholar 

  73. Franceschi C, Bonafe M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci, 2000, 908: 244–254

    PubMed  CAS  Article  Google Scholar 

  74. Rossi S L, Ross T M, Evans J D. West Nile virus. Clin Lab Med, 2010, 30: 47–65

    PubMed  PubMed Central  Article  Google Scholar 

  75. Komar N, Clark G G. West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica, 2006, 19: 112–117

    PubMed  Article  Google Scholar 

  76. Lanciotti R S, Ebel G D, Deubel V, et al. Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology, 2002, 298: 96–105

    PubMed  CAS  Article  Google Scholar 

  77. Murray K, Baraniuk S, Resnick M, et al. Risk factors for encephalitis and death from West Nile virus infection. Epidemiol Infect, 2006, 134: 1325–1332

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  78. Diamond M S, Shrestha B, Marri A, et al. B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol, 2003, 77: 2578–2586

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  79. Sitati E M, Diamond M S. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol, 2006, 80: 12060–12069

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  80. Shrestha B, Diamond M S. Role of CD8+ T cells in control of West Nile virus infection. J Virol, 2004, 78: 8312–8321

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  81. Brien J D, Uhrlaub J L, Hirsch A, et al. Key role of T cell defects in age-related vulnerability to West Nile virus. J Exp Med, 2009, 206: 2735–2745

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  82. Croft D R, Sotir M J, Williams C J, et al. Occupational risks during a monkeypox outbreak, Wisconsin, 2003. Emerg Infect Dis, 2007, 13: 1150–1157

    PubMed  PubMed Central  Article  Google Scholar 

  83. Huhn G D, Chase R A, Dworkin M S. Monkeypox in the Western hemisphere. N Engl J Med, 2004, 350: 1790–1791

    PubMed  CAS  Article  Google Scholar 

  84. Fenner F. Mousepox (infectious ectromelia): past, present, and future. Lab Anim Sci, 1981, 31: 553–559

    PubMed  CAS  Google Scholar 

  85. Fang M, Cheng H, Dai Z, et al. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology, 2006, 345: 231–243

    PubMed  CAS  Article  Google Scholar 

  86. Karupiah G, Buller R M, Van Rooijen N, et al. Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. J Virol, 1996, 70: 8301–8309

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Fang M, Lanier L L, Sigal L J. A role for NKG2D in NK cell-mediated resistance to poxvirus disease. PLoS Pathog, 2008, 4: e30

    PubMed  PubMed Central  Article  Google Scholar 

  88. Fang M, Sigal L J. Antibodies and CD8+ T cells are complementary and essential for natural resistance to a highly lethal cytopathic virus. J Immunol, 2005, 175: 6829–6836

    PubMed  CAS  Article  Google Scholar 

  89. Parker A K, Parker S, Yokoyama W M, et al. Induction of natural killer cell responses by ectromelia virus controls infection. J Virol, 2007, 81: 4070–4079

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  90. Fang M, Sigal L J. Direct CD28 costimulation is required for CD8+ T cell-mediated resistance to an acute viral disease in a natural host. J Immunol, 2006, 177: 8027–8036

    PubMed  CAS  Article  Google Scholar 

  91. Fang M, Orr M T, Spee P, et al. CD94 is essential for NK cell-mediated resistance to a lethal viral disease. Immunity, 2011, 34: 579–589

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  92. Fang M, Roscoe F, Sigal L J. Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med, 2010, 207: 2369–2381

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  93. Xu R H, Fang M, Klein-Szanto A, et al. Memory CD8+ T cells are gatekeepers of the lymph node draining the site of viral infection. Proc Natl Acad Sci USA, 2007, 104: 10992–10997

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  94. Kastenmuller W, Torabi-Parizi P, Subramanian N, et al. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell, 2012, 150: 1235–1248

    PubMed  CAS  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Fang.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Ma, Y., Fang, M. Immunosenescence and age-related viral diseases. Sci. China Life Sci. 56, 399–405 (2013). https://doi.org/10.1007/s11427-013-4478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-013-4478-0

Keywords

  • immunosenescence
  • physiologic ageing
  • infectious disease