Advertisement

Science China Life Sciences

, Volume 54, Issue 10, pp 917–930 | Cite as

Mitogenomic analysis of the genus Panthera

  • Wei Lei
  • Wu XiaoBingEmail author
  • LiXin Zhu
  • ZhiGang Jiang
Open Access
Research Papers

Abstract

The complete sequences of the mitochondrial DNA genomes of Panthera tigris, Panthera pardus, and Panthera uncia were determined using the polymerase chain reaction method. The lengths of the complete mitochondrial DNA sequences of the three species were 16990, 16964, and 16773 bp, respectively. Each of the three mitochondrial DNA genomes included 13 protein-coding genes, 22 tRNA, two rRNA, one OLR, and one control region. The structures of the genomes were highly similar to those of Felis catus, Acinonyx jubatus, and Neofelis nebulosa. The phylogenies of the genus Panthera were inferred from two combined mitochondrial sequence data sets and the complete mitochondrial genome sequences, by MP (maximum parsimony), ML (maximum likelihood), and Bayesian analysis. The results showed that Panthera was composed of Panthera leo, P. uncia, P. pardus, Panthera onca, P. tigris, and N. nebulosa, which was included as the most basal member. The phylogeny within Panthera genus was N. nebulosa (P. tigris (P. onca (P. pardus, (P. leo, P. uncia)))). The divergence times for Panthera genus were estimated based on the ML branch lengths and four well-established calibration points. The results showed that at about 11.3 MYA, the Panthera genus separated from other felid species and then evolved into the several species of the genus. In detail, N. nebulosa was estimated to be founded about 8.66 MYA, P. tigris about 6.55 MYA, P. uncia about 4.63 MYA, and P. pardus about 4.35 MYA. All these estimated times were older than those estimated from the fossil records. The divergence event, evolutionary process, speciation, and distribution pattern of P. uncia, a species endemic to the central Asia with core habitats on the Qinghai-Tibetan Plateau and surrounding highlands, mostly correlated with the geological tectonic events and intensive climate shifts that happened at 8, 3.6, 2.5, and 1.7 MYA on the plateau during the late Cenozoic period.

Keywords

Panthera uncia Panthera pardus Panthera tigris mtDNA phylogeny divergence time Qinghai-Tibetan Plateau 

References

  1. 1.
    Johnson W E, Eizirik E, Pecon S J, et al. The late radiation of modern Felidae: A genetic assessment. Science, 2006, 311: 73–77CrossRefGoogle Scholar
  2. 2.
    Werdelin L. Small pleistocene felines of North America. J Vert Paleo, 1985, 5: 194–210CrossRefGoogle Scholar
  3. 3.
    Hunt M H J. Biogeography of the order Carnivora. In: Carnivore Behavior, Ecology, and Evolution. Vol 2. New York: Cornell University Press, 1996. 485–541Google Scholar
  4. 4.
    Werdelin L. Morphological patterns in the skulls of cats. Biol J Syst, 1983, 19: 375–391Google Scholar
  5. 5.
    Radinsky L B. Evolution of skull shape. Representative modern carnivores. Biol J Linnean Soc, 1981, 15: 369–388CrossRefGoogle Scholar
  6. 6.
    Wurster-Hill D H, Centerwall W R. The interrelationships of chromosome banding patterns in Procyonids, Viverrids and Felids. Cytogenet Cell Genet, 1982, 34: 178–192CrossRefGoogle Scholar
  7. 7.
    Modi W S, O’Brien S J. Quantitative cladistic analysis of chromosomal banding data among species in three orders of mammals: Hominoid primates, felids and arvicolid rodents. In: Chromosome Structure and Function. New York: Plenum, 1988. 215–242CrossRefGoogle Scholar
  8. 8.
    Salles L O. Felid phylogenetics: extant taxa and skull morphology (Felidae Aeluroidea). American Museum Novitates, 1992, 3047: 1–67Google Scholar
  9. 9.
    Collier G E, O’Brien S J. A molecular phylogeny of the Felidae: Immunological distance. Evolution, 1985, 39: 437–487CrossRefGoogle Scholar
  10. 10.
    O’Brien S J, Collier G E, Benveniste R E, et al. Setting the molecular clock in Felidae: the great cats Panthera. In: Tilson R L, Seal U S, editors. Tigers of the world: The biology, biopolitics, management and conservation of an endangered species. Park Ridge, New York: Noyes Publications. 1987. 10–27Google Scholar
  11. 11.
    Pecon S J, Johnson W E, Goldman D, et al. Phylogenetic reconstruction of South American felids defined by protein electrophoresis. Mol Evol, 1994, 39: 296–305CrossRefGoogle Scholar
  12. 12.
    Benveniste R E. The contributions of retroviruses to the study of mammalian evolution. In Molecular Evolutionary Genetics. New York: Plenum, 1985. 359–417CrossRefGoogle Scholar
  13. 13.
    Pecon S J, O’Brien S J. Patterns of Y and X chromosome DNA sequence divergence during the Felidae radiation. Genetics, 1998, 148: 1245–1255Google Scholar
  14. 14.
    Bininda-Emonds O R. The utility of chemical signals as phylogenetic characters: an example from the felidae. Biol J Linnean Soc, 2001, 72: 1–15CrossRefGoogle Scholar
  15. 15.
    Johnson W E, O’Brien S J. Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. Mol Evol, 1997, 44: 98–116CrossRefGoogle Scholar
  16. 16.
    Saccone C, Lanave C, Pesole G, et al. Influence of base composition on quantitative estimates of gene evolution. Methods Enzymol, 1999, 183: 570–583CrossRefGoogle Scholar
  17. 17.
    Wu X B, Zheng T, Jiang Z G, et al. The mitochondrial genome structure of the clouded leopard (Neofelis nebulosa). Genome, 2007, 50: 252–257CrossRefGoogle Scholar
  18. 18.
    Janczewski D N, Modi W S, Stephens J C, et al. Molecular evolution of mitochondrial 12S RNA and cytochrome b sequences in the Pantherine lineage of Felidae. Mol Biol Evol, 1995, 12: 690–707Google Scholar
  19. 19.
    Lopez J V, Cevario S, O’Brien S J. Complete nucleotide sequences of the Domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics, 1996, 33: 229–246CrossRefGoogle Scholar
  20. 20.
    Burger P A, Steinborn R, Walzer C, et al. Analysis of the mitochondrial genome of cheetahs (Acinonyx jubatus) with neurodegenerative disease. Gene, 2004, 338:111–119CrossRefGoogle Scholar
  21. 21.
    Rychlik W, Rychlik P. Oligo Primer Analysis Software. Version6.01. Molecular Biology Insights, Inc., Cascade, Colorado. 2000Google Scholar
  22. 22.
    Altschul S F, Madden T L, Schäer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389–3402PubMedCentralCrossRefGoogle Scholar
  23. 23.
    Thompson J D, Gibson T J, Plewniak F, et al. The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25(24): 4876–4882PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Swofford D L. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods). 2003Google Scholar
  25. 25.
    Huelsenbeck J P, Hillis D M. Success of phylogenetic methods in the four-taxon case. Syst Biol, 1993, 42: 247–264CrossRefGoogle Scholar
  26. 26.
    Ronquist F, Huelsenbeck J P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19: 1572–1574CrossRefGoogle Scholar
  27. 27.
    Posada D, Buckley T R. Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst Biol, 2004, 53: 793–808CrossRefGoogle Scholar
  28. 28.
    Rannala B, Yang Z. Probability distribution of molecular evolution trees: a new method of phylogenetic inference. Mol Evol, 1996, 43:304–311CrossRefGoogle Scholar
  29. 29.
    Leaché A D, Reeder T W. Molecular systematics of the eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. Syst Biol, 2002, 51: 44–68CrossRefGoogle Scholar
  30. 30.
    Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol, 1999, 16: 1114–1116CrossRefGoogle Scholar
  31. 31.
    Asakawa S, Kumazawa Y, Araki T, et al. Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. Mol Evol, 1991, 32: 511–520CrossRefGoogle Scholar
  32. 32.
    Arnason U, Gullberg A, Gretarsdottir S, et al. The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates. Mol Evol, 2000, 50: 569–578Google Scholar
  33. 33.
    Hillis D M, Moritz C. An overview of applications of molecular systematics. Molecular Systematics. Sinauer Associates, Sunderland, Ma. 1990Google Scholar
  34. 34.
    Glazko G V, Nei M. Estimation of divergence times for major lineages of primate species. Mol Biol Evol, 2003, 20: 424–434CrossRefGoogle Scholar
  35. 35.
    Yang Z, Yoder A D. Comparison of likelihood and Bayesian methods for estimating divergence time using multiple gene loci and calibration points, with application to a radiation of cute-looking mouse lemur species. Syst Biol, 2003, 52: 705–716CrossRefGoogle Scholar
  36. 36.
    Waddell P J, Cao Y, Hasegawa M, et al. Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Syst Biol, 1999, 48: 119–137CrossRefGoogle Scholar
  37. 37.
    Nilsson A M, Gullberg A, Spencer P, et al. Marsupial relationships and a timeline for marsupial radiation in South Gondwana. Gene, 2004, 340: 189–196CrossRefGoogle Scholar
  38. 38.
    Huelsenbeck J P, Rannala B. Phylogenetic methods come of age: Testing hypotheses in an evolutionary context. Science, 1997, 276: 227–232CrossRefGoogle Scholar
  39. 39.
    Janke A, Arnason U. The complete mitochondrial genome of Alligator mississippiensis and the separation between recent archosauria (birds and crocodiles). Mol Biol Evol, 1997, 14: 1266–1272CrossRefGoogle Scholar
  40. 40.
    Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform, 2004, 5: 150–163CrossRefGoogle Scholar
  41. 41.
    Jae-Heup K, Eizirik E, O’Brien S J, et al. Structure and patterns of sequence variation in the mitochondrial DNA control region of the great cats. Mitochondrion, 2001, 3: 279–292CrossRefGoogle Scholar
  42. 42.
    Sun Y, Ma F, Xiao B, et al. The complete mitochondrial genomes sequences of Asio flammeus and Asio otus and comparative analysis. Sci China Ser-C Life Sci, 2004, 47: 510–520CrossRefGoogle Scholar
  43. 43.
    Xu X, Gullberg A, Arnason U. The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs. Mol Evol, 1996, 43: 438–446CrossRefGoogle Scholar
  44. 44.
    Kim K S, Seong E L, Ho W J, et al. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol Phylogenet Evol, 1998, 10: 210–220CrossRefGoogle Scholar
  45. 45.
    Gissi C, Gullberg A, Arnason U. The Complete mitochondrial DNA sequence of the Rabbit (Oryctolagus cuniculus). Genomics, 1998, 50: 161–169CrossRefGoogle Scholar
  46. 46.
    Sano N, Kurabayashi A, Fujii T, et al. Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the bell-ring frog, Buergeria buergeri (family Rhacophoridae). Genes Genet Syst, 2004, 79: 151–163CrossRefGoogle Scholar
  47. 47.
    Han D M, Zhou K Y. Complete sequence and gene organization of the mitochondrial genome of Tokay (Gekko gecko). Zool Res, 2005, 26: 123–128Google Scholar
  48. 48.
    Frazer-Abel A A, Hagerman P J. Determination of the angle between the acceptor and anticodon stems of a truncated mitochondrial tRNA. Mol Biol, 1999, 85: 581–593CrossRefGoogle Scholar
  49. 49.
    Bininda-Emonds O R, Gittleman J L, Purvis A. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev, 1999, 74: 143–175CrossRefGoogle Scholar
  50. 50.
    King V, Goodfellow P N, Pearks W A J, et al. Evolution of the male-determining gene SRY within the cat family Felidae. Genetics, 2007, 175: 1855–1867PubMedCentralCrossRefGoogle Scholar
  51. 51.
    O’Brien S J, Johnson W E. The evolution of cats. Genomic paw prints in the DNA of the world’s wild cats have clarified the cat family tree and uncovered several remarkable migrations in their past. Sci Am, 2007, 297: 68–75CrossRefGoogle Scholar
  52. 52.
    Yu L, Li Q W, Ryder O A, et al. Phylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genes. Mol Phylogenet Evol, 2004, 33: 694–705CrossRefGoogle Scholar
  53. 53.
    Kurten B, Anderson E. Pleistocene mammals of North America. New York: Columbia University Pree, 1980Google Scholar
  54. 54.
    Wayne R K, Benveniste R E, Janczewski D N, et al. Molecular and biochemical evolution of the Carnivora. In Carnivore Behaviour, Ecology and Evolution, London: Chapman and Hall, 1989. 465–494CrossRefGoogle Scholar
  55. 55.
    Neff N A. The Big Cats: The Painting of Guy Coheleach. New York: Abrams, 1982Google Scholar
  56. 56.
    Hemmer H. The evolutionary systematics of living Felidae: present status and current problems. Carnivore, 1978, 1: 71–79Google Scholar
  57. 57.
    Pocock R I. Notes upon some African species of the genus Felis, based upon specimens recently exhibited in the society’s garden. Proc Zool Soc Lond, 1907, 77: 656–667CrossRefGoogle Scholar
  58. 58.
    Yu L, Zhang Y P. Phylogenetic studies of pantherine cats (Felidae) based on multiple genes, with novel application of nuclear β-fibrinogen intron 7 to carnivores. Mol Phyl Evol, 2005, 35: 483–495CrossRefGoogle Scholar
  59. 59.
    Pecon S J, Wilkerson A J P, Murphy W J, et al. Phylogenetic Assessment of Introns and SINES within the Y chromosome using the cat family Felidae as a species tree. Mol Biol Evol, 2004, 21: 2299–2309CrossRefGoogle Scholar
  60. 60.
    Mattern M Y, McLennan D A. Phylogeny and speciation of Felids. Cladistics, 2000, 16: 232–253CrossRefGoogle Scholar
  61. 61.
    Buckley-Beason V A, Johnson W E, Nash W G, et al. Molecular evidence for species-level distinctions in clouded leopards. Curr Biol, 2006, 16: 2371–2376CrossRefGoogle Scholar
  62. 62.
    Davis B W, Li G, Murphy W J. Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae). Mol Phylogenet Evol, 2010, 56: 64–76CrossRefGoogle Scholar
  63. 63.
    Turner A. New fossil carnivore remains from the Sterkfontein hominid site (Mammalia: Carnivora). Ann Transvall Mus, 1987, 34: 319–347Google Scholar
  64. 64.
    Li J J, Fang X M, Pan B T. Late Cenozoic intensive uplift of Qinghai-Xijiang Plateau and its impacts on environments in surrounding area. Quat Sci, 2001, 21: 381–391Google Scholar
  65. 65.
    Kroon D, Steen T, Troelstra S R. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc Ocean Drill Prog Sci Res, 1991, 117: 257–263Google Scholar
  66. 66.
    Harrison T M, Copeland P, Kidd W S F, et al. Activation of the Nyainqentanghla shear Zone: Implications for uplift of the southern Tibetan Plateau. Tectonics, 1995, 14: 658–676CrossRefGoogle Scholar
  67. 67.
    Dong M, Fang X M, Shi Z T, et al. The absolute age and division of Cenozoic stratum from the Linxia Basinin Gansu province, Chinese Science Bulletin (in Chinese), 1997, 14: 1458–1471Google Scholar
  68. 68.
    An Z, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Qinghai-Tibetan Plateau since late Miocene times. Nature, 2001, 411: 62–66CrossRefGoogle Scholar
  69. 69.
    Zheng H, Powell C M, An Z, et al. Pliocene uplift of the northern Tibet plateau. Geology, 2000, 28: 715–718CrossRefGoogle Scholar
  70. 70.
    Li J J, Fang X M, Ma H Z, et al. Geomorphologic and environmental evolution in upper reaches of Yellow River during the late Cenozoic. Sci China Ser-D Earth Sci, 1996, 39: 380–390Google Scholar
  71. 71.
    Arnason U, Adegoke J A, Bodin K, et al. Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA, 2002, 99: 8151–8156PubMedCentralCrossRefGoogle Scholar
  72. 72.
    Xu X, Arnason U. The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene, 1994, 148: 357–362CrossRefGoogle Scholar
  73. 73.
    Xu X, Arnason U. The complete mitochondrial DNA sequence of the white rhinoceros, Ceratotherium simum, and comparison with the mtDNA sequence of the Indian rhinoceros, Rhinoceros unicornis. Mol Phylogenet Evol, 1997, 7: 189–194CrossRefGoogle Scholar
  74. 74.
    Xu X, Janke A, Arnason U. The complete mitochondrial DNA sequence of the greater Indian rhinoceros, Rhinoceros unicornis, and the Phylogenetic relationship among Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea). Mol Biol Evol, 1996, 13: 1167–1173CrossRefGoogle Scholar
  75. 75.
    Janke A, Feldmaier-Fuchs G, Thomas W K, et al. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics, 1994, 137: 243–256PubMedCentralGoogle Scholar
  76. 76.
    Desjardins P, Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol, 1990, 212: 599–634Google Scholar
  77. 77.
    Johnson K P, Sorenson M D. Comparing molecular evolution in two mitochondrial protein coding genes (cytochrome b and ND2) in the dabbling ducks (Tribe: Anatini). Mol Phylogenet Evol, 1998, 10: 82–94CrossRefGoogle Scholar
  78. 78.
    Härlid A, Janke A, Árnason Ú. The complete mitochondrial genome of Rhea americana and early avian divergences. J Mol Evol, 1998, 46: 669–679CrossRefGoogle Scholar
  79. 79.
    Härlid A, Janke A, Árnason Ú. The mtDNA Sequence of the ostrich and the divergence between paleognathous and neognathous birds. J Mol Evol, 1997, 14: 754–761CrossRefGoogle Scholar
  80. 80.
    Janke A, Arnason U. The complete mitochondrial genome of Alligator mississippiensis and the separation between recent Archo-sauria (birds and crocodiles). Mol Biol Evol, 1997, 14: 1266–1272CrossRefGoogle Scholar
  81. 81.
    Wu X B, Wang Y Q, Zhou K Y, et al. Complete mitochondrial DNA sequence of Chinese alligator, Alligator sinensis, and phylogeny of crocodiles. Chinese Sci Bull, 2003, 48: 2050–2054CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Wei Lei
    • 1
    • 2
  • Wu XiaoBing
    • 1
    Email author
  • LiXin Zhu
    • 3
  • ZhiGang Jiang
    • 4
  1. 1.Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life SciencesAnhui Normal UniversityWuhuChina
  2. 2.Faculty of Animal ScienceSuzhou Vocational Technology CollegeSuzhouChina
  3. 3.Department of Chemistry and Life SciencesChuzhou UniversityChuzhouChina
  4. 4.Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina

Personalised recommendations