Skip to main content
Log in

Progress in neural plasticity

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

One of the properties of the nervous system is the use-dependent plasticity of neural circuits. The structure and function of neural circuits are susceptible to changes induced by prior neuronal activity, as reflected by short- and long-term modifications of synaptic efficacy and neuronal excitability. Regarded as the most attractive cellular mechanism underlying higher cognitive functions such as learning and memory, activity-dependent synaptic plasticity has been in the spotlight of modern neuroscience since 1973 when activity-induced long-term potentiation (LTP) of hippocampal synapses was first discovered. Over the last 10 years, Chinese neuroscientists have made notable contributions to the study of the cellular and molecular mechanisms of synaptic plasticity, as well as of the plasticity beyond synapses, including activity-dependent changes in intrinsic neuronal excitability, dendritic integration functions, neuron-glia signaling, and neural network activity. This work highlight some of these significant findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hawkins R D, Kandel E R, Siegelbaum S A. Learning to modulate transmitter release: Themes and variations in synaptic plasticity. Annu Rev Neurosci, 1993, 16: 625–665, 10.1146/annurev.ne.16.030193.003205, 8096376, 1:CAS:528:DyaK3sXitlSntr4%3D

    Article  CAS  PubMed  Google Scholar 

  2. Feng T P. Studies on the neuromuscular junction XXVI: The changes of the end-plate potential during and after prolonged stimulation. Chin J Physiol, 1941, 16: 341–372, 1:CAS:528:DyaH38XjslKhuw%3D%3D

    CAS  Google Scholar 

  3. Feng T P. Looking back, looking forward. Annu Rev Neurosci, 1988, 11: 1–12, 10.1146/annurev.ne.11.030188.000245, 3284437, 1:STN:280:DyaL1c3gvVaktg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  4. Bliss T, Lømo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond), 1973, 232: 331–356, 1:STN:280:DyaE3s3ktlersw%3D%3D

    Article  CAS  Google Scholar 

  5. Abraham W C. How long will long-term potentiation last? Phil Trans R Soc Lond B, 2003, 358: 735–744, 10.1098/rstb.2002.1222

    Article  Google Scholar 

  6. Bear M F. Bidirectional synaptic plasticity: From theory to reality. Phil Trans R Soc Lond B, 2003, 358: 649–655, 10.1098/rstb.2002.1255

    Article  Google Scholar 

  7. Bliss T V, Collingridge G L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 1993, 361: 31–39, 10.1038/361031a0, 8421494, 1:CAS:528:DyaK3sXntlOntw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  8. Martin S J, Grimwood P D, Morris R G. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu Rev Neurosci, 2000, 23: 649–711, 10.1146/annurev.neuro.23.1.649, 10845078, 1:CAS:528:DC%2BD3cXjs1Gms7g%3D

    Article  CAS  PubMed  Google Scholar 

  9. Katz L C, Shatz C J. Synaptic activity and the construction of cortical circuits. Science, 1996, 274: 1133–1138, 10.1126/science.274.5290.1133, 8895456, 1:CAS:528:DyaK28XmvVOru7w%3D

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L I, Poo M M. Electrical activity and development of neural circuits. Nat Neurosci, 2001, 4(Suppl): 1207–1214, 10.1038/nn753, 11687831, 1:CAS:528:DC%2BD3MXot1Wrt7g%3D

    Article  CAS  PubMed  Google Scholar 

  11. Bienenstock E L, Cooper L N, Munro P W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci, 1982, 2: 32–48, 7054394, 1:STN:280:DyaL387gtValsA%3D%3D

    CAS  PubMed  Google Scholar 

  12. Malenka R C, Bear M F. LTP and LTD: An embarrassment of riches. Neuron, 2004, 44: 5–21, 10.1016/j.neuron.2004.09.012, 15450156, 1:CAS:528:DC%2BD2cXovVOlu7Y%3D

    Article  CAS  PubMed  Google Scholar 

  13. Abbott L F, Nelson S B. Synaptic plasticity: Taming the beast. Nat Neurosci, 2000, 3: 1178–1183, 10.1038/81453, 11127835, 1:CAS:528:DC%2BD3cXotlKjt7s%3D

    Article  CAS  PubMed  Google Scholar 

  14. Dan Y, Poo M M. Spike timing-dependent plasticity of neural circuits. Neuron, 2004, 44: 23–30, 10.1016/j.neuron.2004.09.007, 15450157, 1:CAS:528:DC%2BD2cXovVOlu7c%3D

    Article  CAS  PubMed  Google Scholar 

  15. Nelson S B, Turrigiano G G. Strength through diversity. Neuron, 2008, 60: 477–482, 10.1016/j.neuron.2008.10.020, 18995822, 1:CAS:528:DC%2BD1cXhsVahsr%2FI

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kelleher R J, Govindarajan A, Tonegawa S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron, 2004, 44: 59–73, 10.1016/j.neuron.2004.09.013, 15450160, 1:CAS:528:DC%2BD2cXovVOksrw%3D

    Article  CAS  PubMed  Google Scholar 

  17. Alberini C M. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev, 2009, 89: 121–145, 10.1152/physrev.00017.2008, 19126756, 1:CAS:528:DC%2BD1MXit1Cqtr0%3D

    Article  CAS  PubMed  Google Scholar 

  18. Lonze B E, Ginty D D. Function and regulation of CREB family transcription factors in the nervous system. Neuron, 2002, 35:605–623, 10.1016/S0896-6273(02)00828-0, 12194863, 1:CAS:528:DC%2BD38XmslSlsLY%3D

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Wu H, Li S, et al. Requirement of TORC1 for late-Phase long-term potentiation in the hippocampus. PLoS ONE, 2006, 1: e16, 10.1371/journal.pone.0000016, 17183642, 1:CAS:528:DC%2BD2sXjsFentb4%3D

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wu H, Zhou Y, Xiong Z Q. Transducer of regulated CREB and late phase long-term synaptic potentiation. FEBS J, 2007, 274: 3218–3223, 10.1111/j.1742-4658.2007.05891.x, 17565597, 1:CAS:528:DC%2BD2sXns1OksLc%3D

    Article  CAS  PubMed  Google Scholar 

  21. Sui L, Wang J, Li B M. Role of the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin signaling pathway in long-term potentiation and trace fear conditioning memory in rat medial prefrontal cortex. Learn Mem, 2008, 15: 762–776, 10.1101/lm.1067808, 18832563, 1:CAS:528:DC%2BD1MXhsV2nsL8%3D

    Article  CAS  PubMed  Google Scholar 

  22. Isaac J T R, Nicoll R A, Malenka R C. Evidence for silent synapses: Implications for the expression of LTP. Neuron, 1995, 15:427–434, 10.1016/0896-6273(95)90046-2, 7646894, 1:CAS:528:DyaK2MXnvVWltrs%3D

    Article  CAS  PubMed  Google Scholar 

  23. Shen W, Wu B, Zhang Z, et al. Activity-induced rapid synaptic maturation mediated by presynaptic cdc42 signaling. Neuron, 2006, 50: 401–414, 10.1016/j.neuron.2006.03.017, 16675395, 1:CAS:528:DC%2BD28XkvFSgsb0%3D

    Article  CAS  PubMed  Google Scholar 

  24. Abraham W C. Metaplasticity: Tuning synapses and networks for plasticity. Nat Rev Neurosci, 2008, 9: 387–399, 10.1038/nrn2356, 18401345, 1:CAS:528:DC%2BD1cXkvVensLo%3D

    Article  CAS  PubMed  Google Scholar 

  25. Zhao J, Peng Y, Xu Z, et al. Synaptic metaplasticity through NMDA receptor lateral diffusion. J Neurosci, 2008, 28: 3060–3070, 10.1523/JNEUROSCI.5450-07.2008, 18354009, 1:CAS:528:DC%2BD1cXjvFCjsLY%3D

    Article  CAS  PubMed  Google Scholar 

  26. Bear M F. Bidirectional synaptic plasticity: From theory to reality. PhiloTrans R Soc Lond B Biol Sci, 2003, 358: 649–655, 10.1098/rstb.2002.1255

    Article  Google Scholar 

  27. Xu Z, Chen R Q, Gu Q H, et al. Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio. J Neurosci, 2009, 29: 8764–8773, 10.1523/JNEUROSCI.1014-09.2009, 19587283, 1:CAS:528:DC%2BD1MXovVKhu7k%3D

    Article  CAS  PubMed  Google Scholar 

  28. Markram H, Toledo-Rodriguez M, Wang Y, et al. Interneruons of the neocortical inhibitory system. Nat Rev Neurosci, 2004, 5: 793–807, 10.1038/nrn1519, 15378039, 1:CAS:528:DC%2BD2cXns1Kiurc%3D

    Article  CAS  PubMed  Google Scholar 

  29. Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 2008, 321: 53–57, 10.1126/science.1149381, 18599766, 1:CAS:528:DC%2BD1cXnvFektbw%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gaiarsa J L, Caillard O, Ben-Ari Y. Long-term plasticity at GABAer-gic and glycinergic synapses: Mechanisms and functional significance. Trends Neurosci, 2002, 25: 564–570, 10.1016/S0166-2236(02)02269-5, 12392931, 1:CAS:528:DC%2BD38XotVWguro%3D

    Article  CAS  PubMed  Google Scholar 

  31. Woodin M A, Ganguly K, Poo M M. Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cltransporter activity. Neuron, 2003, 39: 807–820, 10.1016/S0896-6273(03)00507-5, 12948447, 1:CAS:528:DC%2BD3sXnt1Wku7s%3D

    Article  CAS  PubMed  Google Scholar 

  32. Xu C, Zhao M X, Poo M M, et al. GABAB receptor activation mediates frequency-dependent plasticity of developing GABAergic Synapses. Nat Neurosci, 2008, 11: 410–1418, 10.1038/nn2077, 1:CAS:528:DC%2BD1cXjslSrt7Y%3D

    Article  Google Scholar 

  33. Lu J T, Li C Y, Zhao J P, et al. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type. J Neurosci, 2007, 27: 9711–9720, 10.1523/JNEUROSCI.2513-07.2007, 17804631, 1:CAS:528:DC%2BD2sXhtVKlsr%2FK

    Article  CAS  PubMed  Google Scholar 

  34. Ganguly K, Kiss L, Poo M M. Enhancement of presynaptic neuronal excitability by correlated presynaptic and postsynaptic spiking. Nat Neurosci, 2000, 3: 1018–1026, 10.1038/79838, 11017175, 1:CAS:528:DC%2BD3cXntVakt70%3D

    Article  CAS  PubMed  Google Scholar 

  35. Li C, Lu J, Wu C P, et al. Bidirectional modification of presynaptic neuronal excitability accompanying spike timing-dependent synaptic plasticity. Neuron, 2004, 41: 257–268, 10.1016/S0896-6273(03)00847-X, 14741106, 1:CAS:528:DC%2BD2cXhtVahsb8%3D

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Xu N L. Wu C P, et al. Bidirectional changes in spatial dendritic integration accompanying long-term synaptic modifications. Neuron, 2003, 37: 463–472, 10.1016/S0896-6273(02)01189-3, 12575953, 1:CAS:528:DC%2BD3sXhsVOmuro%3D

    Article  CAS  PubMed  Google Scholar 

  37. Xu N L, Ye C Q, Poo M M, et al. Coincidence detection of synaptic inputs is facilitated at the distal dendrites following LTP induction. J Neurosci, 2006, 26: 3002–3009, 10.1523/JNEUROSCI.5220-05.2006, 16540578, 1:CAS:528:DC%2BD28XivFKmur8%3D

    Article  CAS  PubMed  Google Scholar 

  38. Allen N J, Barres B A. Glia — more than just brain glue. Nature, 2009, 457: 675–677, 10.1038/457675a, 19194443, 1:CAS:528:DC%2BD1MXhsVCrtr4%3D

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J M, Wang H K, Ye C Q, et al. ATP released by astrocytes mediates glutamatergic activitydependent heterosynaptic suppression. Neuron, 2003, 40: 971–982, 10.1016/S0896-6273(03)00717-7, 14659095, 1:CAS:528:DC%2BD3sXhtVWgtLbN

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Ge W, Chen Y, et al. Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc Natl Acad Sci USA, 2003, 100: 15194–15199, 10.1073/pnas.2431073100, 14638938, 1:CAS:528:DC%2BD3sXpvFaqu7g%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Z, Gong N, Wang W, et al. Bell-shaped D-serine actions on hippocampal long-term depression and spatial memory retrieval. Cerebl Cortex, 2008, 18: 2391–2401, 10.1093/cercor/bhn008

    Article  Google Scholar 

  42. Ge W P, Duan S. Persistent enhancement of neuron-glia signaling mediated by increased extracellular K+ accompanying long-term synaptic potentiation. J Neurophysiol, 2007, n97: 2564–2569, 10.1152/jn.00146.2006, 1:CAS:528:DC%2BD2sXksFKksb0%3D

    Article  Google Scholar 

  43. Murai K K, Van Meyel D J. V. Neuron-glial communication at synapses: insights from vertebrates and nvertebrates. Neuroscientist, 2007, 13: 657–666, 10.1177/1073858407304393, 17911218

    Article  PubMed  Google Scholar 

  44. Ge W P, Yang X J, Zhang Z, et al. Long-term potentiation of neuronglia synapses mediated by Ca2+-permeable AMPA receptors. Science 2007, Science, 312: 1533–1537, 10.1126/science.1124669, 1:CAS:528:DC%2BD28XltlGlt74%3D

    Article  Google Scholar 

  45. Malenka R C, Nicoll R A. Long-term potentiation-a decade of progress? Science, 1999, 285: 1870–1874, 10.1126/science.285.5435.1870, 10489359, 1:CAS:528:DyaK1MXmtVCntbY%3D

    Article  CAS  PubMed  Google Scholar 

  46. Kauer J A, Malenka R C. Synaptic plasticity and addiction Nat Rev Neurosci, 2007, 8: 844–858, 10.1038/nrn2234, 17948030, 1:CAS:528:DC%2BD2sXhtFygsbrL

    Article  CAS  PubMed  Google Scholar 

  47. Pu L, Bao G B, Xu N J, et al. Hippocampal long-term potentiation is reduced by chronic opiate treatment and can be restored by re-exposure to opiates. J Neurosci, 2002, 22: 1914–1921, 11880521, 1:CAS:528:DC%2BD38XhvVaksrk%3D

    CAS  PubMed  Google Scholar 

  48. Xu N J, Bao L, Fan H P, et al. Morphine withdrawal increases glutamate uptake and surface expression of glutamate transporter GLT1 at hippocampalsynapses. J Neurosci, 2003, 23: 4775–4784, 12805317, 1:CAS:528:DC%2BD3sXkslOksLc%3D

    CAS  PubMed  Google Scholar 

  49. Niu L, Cao B, Zhu H, et al. Impaired in vivo synaptic plasticity in dentate gyrus and spatial memory in juvenile rats induced by prenatal morphine exposure. Hippocampus, 2009, 19: 649–657, 10.1002/hipo.20540, 19115391, 1:CAS:528:DC%2BD1MXpsVens7o%3D

    Article  CAS  PubMed  Google Scholar 

  50. Yang S N, Huang L T, Wang C L, et al. Prenatal administration of morphine decreases CREB serine-133 phosphorylation and synaptic plasticity range mediated by glutamatergic transmission in the hippocampal CA1 area of cognitive-deficient rat offspring. Hippocampus, 2003, 13: 915–921, 10.1002/hipo.10137, 14750654, 1:CAS:528:DC%2BD2cXotVShtw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  51. Xiong W, Yang Y, Cao J, et al. The stress experience dependent long-term depression disassociated with stress effect on spatial memory task. Neurosci Res, 2003, 46: 415–421, 10.1016/S0168-0102(03)00120-2, 12871763

    Article  PubMed  Google Scholar 

  52. Yang Y, Zheng X G, Wang Y F, et al. Stress enables synaptic depression in CA1 synapses by acute and chronic morphine: possible mechanisms for corticosterone on opiate addiction. J Neurosci, 2004, 24: 2412–2412, 10.1523/JNEUROSCI.5544-03.2004, 15014116, 1:CAS:528:DC%2BD2cXisVKhsLY%3D

    Article  CAS  PubMed  Google Scholar 

  53. Dong Z F, Han H L, Wang W N, et al. Morphine conditioned place preference depends on glucocorticoid receptors in both hippocampus and nucleus accumbens. Hippoocampus, 2006, 16: 809–813, 10.1002/hipo.20216, 1:CAS:528:DC%2BD28XhtF2rtbvP

    Article  CAS  Google Scholar 

  54. Liu S J, Zhang A H, Li H L, et al. Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory. J Neurochem, 2003, 87: 1333–1344, 14713290, 1:CAS:528:DC%2BD2cXit1Kq, 10.1046/j.1471-4159.2003.02070.x

    Article  CAS  PubMed  Google Scholar 

  55. Zhu L Q, Wang S H, Liu D, et al. Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci, 2007, 27: 12211–12220, 10.1523/JNEUROSCI.3321-07.2007, 17989287, 1:CAS:528:DC%2BD2sXhtlartLjE

    Article  CAS  PubMed  Google Scholar 

  56. Bishop G. Cyclical changes in excitability of the optic pathway of the rabbit. Am J Physiol, 1933, 103: 213–224

    Google Scholar 

  57. Schroeder C E, Lakatos, P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci, 2008, 32: 9–18, 10.1016/j.tins.2008.09.012, 19012975, 1:CAS:528:DC%2BD1MXotVWitg%3D%3D

    Article  PubMed  Google Scholar 

  58. Gao L X, Meng X K, Ye C Q, et al. Entrainment of Slow Oscillations of Auditory Thalamic Neurons by Repetitive Sound Stimuli. J Neurosci, 2009, 29: 6013–6021, 10.1523/JNEUROSCI.5733-08.2009, 19420268, 1:CAS:528:DC%2BD1MXlvVGnt7c%3D

    Article  CAS  PubMed  Google Scholar 

  59. Sumbre G, Muto A, Baier H, et al. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Nature, 2008, 456: 102–106, 10.1038/nature07351, 18923391, 1:CAS:528:DC%2BD1cXhtlCjtrnN

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoHui Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Poo, MM. Progress in neural plasticity. Sci. China Life Sci. 53, 322–329 (2010). https://doi.org/10.1007/s11427-010-0062-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0062-z

Keywords

Navigation