Skip to main content

Long-Term Potentiation

  • Reference work entry
  • First Online:
Neuroscience in the 21st Century
  • 214 Accesses

Abstract

At many glutamatergic synapses in the brain, brief episodes of strong synaptic activity can lead to an enduring enhancement of synaptic strength, a property known as long-term potentiation (LTP). This chapter presents a concise overview of the cellular mechanisms responsible for LTP and of the role of LTP in learning and memory. Glutamate receptors of the NMDA subtype control the induction of LTP at many synapses, and both presynaptic and postsynaptic changes are involved in its maintenance. Recent studies employing optogenetic techniques have thrown light on how long-term synaptic changes are exploited to encode memories at the network level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References listed here are freely available via PubMed with the exception of those marked with an asterisk

  • Barberis A, Bacci A (2015) Editorial: plasticity of GABAergic synapses. Front Cell Neurosci 9:262

    Article  Google Scholar 

  • Beck H, Goussakov IV, Lie A, Helmstaedter C, Elger CE (2000) Synaptic plasticity in the human dentate gyrus. J Neurosci 20:7080–7086

    Article  CAS  Google Scholar 

  • Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  CAS  Google Scholar 

  • Bliss TV, Collingridge GL (2013) Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide. Mol Brain 6:5

    Article  CAS  Google Scholar 

  • Bliss TV, Lømo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232(2):331–356

    Article  CAS  Google Scholar 

  • Bliss TVP, Collingridge GL, Morris RGM (2007) Synaptic plasticity in the Hippocampus. In: Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (eds) The Hippocampus book. Oxford University Press, New York, pp 343–474

    Google Scholar 

  • Chen CC, Lu J, Zuo Y (2014) Spatiotemporal dynamics of dendritic spines in the living brain. Front Neuroanat 8:28

    Article  Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H (1983) Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33–46

    Article  CAS  Google Scholar 

  • Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673

    Article  CAS  Google Scholar 

  • *Cooke SF, Komorowski RW, Kaplan ES, Gavornik JP, Bear MF (2015) Visual recognition memory, manifested as long-term habituation, requires synaptic plasticity in V1. Nat Neurosci 18(2):262–271

    Article  CAS  Google Scholar 

  • Dudek S, Bear MF (1993) Bidirectional long-term modifications of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13(7):2910–2918

    Article  CAS  Google Scholar 

  • Enoki R, Hu YL, Hamilton D, Fine A (2009) Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis. Neuron 62:242–253

    Article  CAS  Google Scholar 

  • Feldman DE (2012) The spike-timing dependence of plasticity. Neuron 75(4):556–571

    Article  CAS  Google Scholar 

  • Gruart A, Leal-Campanario R, Lopez-Ramos JC, Delgado-Garcia JM (2015) Functional basis of associative learning and their relationships with long-term potentiation evoked in the involved neural circuits: lessons from studies in behaving mammals. Neurobiol Learn Mem 124:3–18

    Article  Google Scholar 

  • *Hayashi-Takagi A, Yagishita S, Nakamura M, Shirai F, Wu YI, Loshbaugh AL, Kuhlman B, Hahn KM, Kasai H (2015) Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525(7569):333–338

    Article  CAS  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar purkinje cells. J Physiol 324:113–134

    Article  CAS  Google Scholar 

  • Jensen V, Kaiser KM, Borchardt T, Adelmann G, Rozov A, Burnashev N, Brix C, Frotscher M, Andersen P, Hvalby O, Sakmann B, Seeburg PH, Sprengel R (2003) A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A. J Physiol 553(Pt 3):843–856

    Article  CAS  Google Scholar 

  • Kano M (2014) Control of synaptic function by endocannabinoid-mediated retrograde signaling. Proc Jpn Acad Ser B Phys Biol Sci 90(7):235–250

    Article  CAS  Google Scholar 

  • Kneussel M, Triller A, Choquet D (2014) SnapShot: receptor dynamics at plastic synapses. Cell 157(7):1738–1738e1731

    Article  CAS  Google Scholar 

  • Laezza F, Dingledine R (2011) Induction and expression rules of synaptic plasticity in hippocampal interneurons. Neuropharmacology 60(5):720–729

    Article  CAS  Google Scholar 

  • *Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385

    Article  CAS  Google Scholar 

  • Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69(4):650–663

    Article  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  Google Scholar 

  • Morris RG, Frey U (1997) Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Philos Trans R Soc Lond B Biol Sci 352(1360):1489–1503

    Article  CAS  Google Scholar 

  • *Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313(5790):1141–1144

    Article  CAS  Google Scholar 

  • Sandkuhler J, Gruber-Schoffnegger D (2012) Hyperalgesia by synaptic long-term potentiation (LTP): an update. Curr Opin Pharmacol 12(1):18–27

    Article  Google Scholar 

  • Steward O, Farris S, Pirbhoy PS, Darnell J, Driesche SJ (2014) Localization and local translation of Arc/Arg3.1 mRNA at synapses: some observations and paradoxes. Front Mol Neurosci 7:101

    PubMed  Google Scholar 

  • Takeuchi T, Duszkiewicz AJ, Morris RG (2014) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci 369(1633):20130288

    Article  Google Scholar 

  • Tonegawa S, Pignatelli M, Roy DS, Ryan TJ (2015) Memory engram storage and retrieval. Curr Opin Neurobiol 35:101–109

    Article  CAS  Google Scholar 

  • Turrigiano G (2012) Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol 4(1):a005736

    Article  Google Scholar 

  • Wigstrom H, Gustafsson B, Huang C-C, Abraham WC (1986) Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing current pulses. Acta Physiol Scand 126:317–319

    Article  CAS  Google Scholar 

  • *Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A, Kaiser KM, Koster HJ, Borchardt T, Worley P, Lubke J, Frotscher M, Kelly PH, Sommer B, Andersen P, Seeburg PH, Sakmann B (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284(5421):1805–1811

    Article  CAS  Google Scholar 

  • Zhuo M (2014) Long-term potentiation in the anterior cingulate cortex and chronic pain. Philos Trans R Soc Lond B Biol Sci 369:20130146

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Bliss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bliss, T. (2022). Long-Term Potentiation. In: Pfaff, D.W., Volkow, N.D., Rubenstein, J.L. (eds) Neuroscience in the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-88832-9_143

Download citation

Publish with us

Policies and ethics