Skip to main content
Log in

Regulation of Toll-like receptor signaling in the innate immunity

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Toll-like receptors sense invading pathogens by recognizing a wide variety of conserved pathogen-associated molecular patterns (PAMPs). The members of TLR family selectively utilize adaptor proteins MyD88, TRIF, TIRAP and TRAM to activate overlapping but distinct signal transduction pathways which trigger production of different panels of mediators such as proinflammatory cytokines and type I interferon. These mediators not only control innate immunity but also direct subsequently developed adaptive immunity. TLR activation is strictly and finely regulated at multiple levels of the signal transduction pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 1996, 86: 973–983, 10.1016/S0092-8674(00)80172-5, 8808632, 1:CAS:528:DyaK28XlvV2nsLY%3D

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov R, Preston-Hurlburt P, Janeway C A, et al. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 1997, 388: 394–397, 10.1038/41131, 9237759, 1:CAS:528:DyaK2sXkvVChurc%3D

    Article  CAS  PubMed  Google Scholar 

  3. Akira S. Toll-like receptor signaling. J Biol Chem, 2003, 278: 38105–38108, 10.1074/jbc.R300028200, 12893815, 1:CAS:528:DC%2BD3sXnslSqtr8%3D

    Article  CAS  PubMed  Google Scholar 

  4. Schnare M, Barton G M, Holt A C, et al. Toll-like receptors control activation of adaptive immune responses. Nat Immunol, 2001, 2: 947–950, 10.1038/ni712, 11547333, 1:CAS:528:DC%2BD3MXnsVCis74%3D

    Article  CAS  PubMed  Google Scholar 

  5. Liew F Y, Xu D, Brint E K, et al. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol, 2005, 5: 446–458, 10.1038/nri1630, 15928677, 1:CAS:528:DC%2BD2MXks1GmsLo%3D

    Article  CAS  PubMed  Google Scholar 

  6. Ozinsky A, Underhill D M, Fontenot J D, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA, 2000, 97: 13766–13771, 10.1073/pnas.250476497, 11095740, 1:CAS:528:DC%2BD3cXoslyns7w%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takeuchi O, Sato S, Horiuchi T, et al. Cutting edge: Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 2002, 169: 10–14, 12077222, 1:CAS:528:DC%2BD38XltVKjtbs%3D

    Article  CAS  PubMed  Google Scholar 

  8. Omueti K O, Beyer J M, Johnson C M, et al. Domain exchange between human toll-like receptors 1 and 6 reveals a region required for lipopeptide discrimination. J Biol Chem, 2005, 280: 36616–36625, 10.1074/jbc.M504320200, 16129684, 1:CAS:528:DC%2BD2MXhtFKht7fO

    Article  CAS  PubMed  Google Scholar 

  9. Liu L, Botos I, Wang Y, et al. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science, 2008, 320: 379–381, 10.1126/science.1155406, 18420935, 1:CAS:528:DC%2BD1cXks1GhsLk%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Park B S, Song D H, Kim H M, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 2009, 458: 1191–1195, 10.1038/nature07830, 19252480, 1:CAS:528:DC%2BD1MXisVOrtLk%3D

    Article  CAS  PubMed  Google Scholar 

  11. O’Neill L A, Bowie A G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol, 2007, 7: 353–364, 10.1038/nri2079, 17457343, 1:CAS:528:DC%2BD2sXksFeks7g%3D

    Article  PubMed  Google Scholar 

  12. LeBouder E, Rey-Nores J E, Rushmere N K, et al. Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J Immunol, 2003, 171: 6680–6689, 14662871, 1:CAS:528:DC%2BD3sXpsV2rt7Y%3D

    Article  CAS  PubMed  Google Scholar 

  13. Iwami K I, Matsuguchi T, Masuda A, et al. Cutting edge: Naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol, 2000, 165: 6682–6686, 11120784, 1:CAS:528:DC%2BD3cXovFyhtL4%3D

    Article  CAS  PubMed  Google Scholar 

  14. Kagan JC, Su T, Horng T, et al. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol, 2008, 9: 361–368, 10.1038/ni1569, 18297073, 1:CAS:528:DC%2BD1cXjtlGms7w%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao X. Forefront of progress in immunology. Beijing: People’s Medical Publishing House, 2009. 136–160

    Google Scholar 

  16. Lord K A, Hoffman-Liebermann B, Liebermann D A. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene, 1990, 5: 1095–1097, 2374694, 1:CAS:528:DyaK3cXmt1GnsbY%3D

    CAS  PubMed  Google Scholar 

  17. Muzio M, Ni J, Feng P, et al. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 1997, 278: 1612–1615, 10.1126/science.278.5343.1612, 9374458, 1:CAS:528:DyaK2sXnslCisbc%3D

    Article  CAS  PubMed  Google Scholar 

  18. Wesche H, Henzel W J, Shillinglaw W, et al. MyD88: An adapter that recruits IRAK to the IL-1 receptor complex. Immunity, 1997, 7: 837–847, 10.1016/S1074-7613(00)80402-1, 9430229, 1:CAS:528:DyaK1cXjsFahtg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  19. Kawai T, Adachi O, Ogawa T, et al. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity, 1999, 11: 115–122, 10.1016/S1074-7613(00)80086-2, 10435584, 1:CAS:528:DyaK1MXltFCgt7w%3D

    Article  CAS  PubMed  Google Scholar 

  20. Janssens S, Burns K, Tschopp J, et al. Regulation of interleukin-1- and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr Biol, 2002, 12: 467–471, 10.1016/S0960-9822(02)00712-1, 11909531, 1:CAS:528:DC%2BD38XitlGgur8%3D

    Article  CAS  PubMed  Google Scholar 

  21. Burns K, Janssens S, Brissoni B, et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med, 2003, 197: 263–268, 10.1084/jem.20021790, 12538665

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fitzgerald K A, Palsson-McDermott E M, Bowie A G, et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature, 2001, 413: 78–83, 10.1038/35092578, 11544529, 1:CAS:528:DC%2BD3MXmvFSrsrg%3D

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto M, Sato S, Hemmi H, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature, 2002, 420: 324–329, 10.1038/nature01182, 12447441, 1:CAS:528:DC%2BD38XovVektL4%3D

    Article  CAS  PubMed  Google Scholar 

  24. Horng T, Barton G M, Flavell R A, et al. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature, 2002, 420: 329–333, 10.1038/nature01180, 12447442, 1:CAS:528:DC%2BD38XovVekt7c%3D

    Article  CAS  PubMed  Google Scholar 

  25. Kagan J C, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell, 2006, 125: 943–955, 10.1016/j.cell.2006.03.047, 16751103, 1:CAS:528:DC%2BD28Xls1Shtro%3D

    Article  CAS  PubMed  Google Scholar 

  26. Ohnishi H, Tochio H, Kato Z, et al. Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Proc Natl Acad Sci USA, 2009, 106: 10260–10265, 10.1073/pnas.0812956106, 19506249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kanakaraj P, Schafer P H, Cavender D E, et al. Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J Exp Med, 1998, 187: 2073–2079, 10.1084/jem.187.12.2073, 9625767, 1:CAS:528:DyaK1cXktVeit7o%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomas J A, Allen J L, Tsen M, et al. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J Immunol, 1999, 163: 978–984, 10395695, 1:CAS:528:DyaK1MXksVensrc%3D

    CAS  PubMed  Google Scholar 

  29. Li S, Strelow A, Fontana E J, et al. IRAK-4: A novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA, 2002, 99: 5567–5572, 10.1073/pnas.082100399, 11960013, 1:CAS:528:DC%2BD38XjtFKlt7s%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi K, Hernandez L D, Galan J E, et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell, 2002, 110: 191–202, 10.1016/S0092-8674(02)00827-9, 12150927, 1:CAS:528:DC%2BD38XlvV2htrw%3D

    Article  CAS  PubMed  Google Scholar 

  31. Picard C, Puel A, Bonnet M, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science, 2003, 299: 2076–2079, 10.1126/science.1081902, 12637671, 1:CAS:528:DC%2BD3sXitlCisLo%3D

    Article  CAS  PubMed  Google Scholar 

  32. Kim T W, Staschke K, Bulek K, et al. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J Exp Med, 2007, 204: 1025–1036, 10.1084/jem.20061825, 17470642, 1:CAS:528:DC%2BD2sXlsFSjsbc%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kawagoe T, Sato S, Matsushita K, et al. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol, 2008, 9: 684–691, 10.1038/ni.1606, 18438411, 1:CAS:528:DC%2BD1cXmtVWqur0%3D

    Article  CAS  PubMed  Google Scholar 

  34. Ye H, Arron J R, Lamothe B, et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature, 2002, 418:443–447, 10.1038/nature00888, 12140561, 1:CAS:528:DC%2BD38XlsFajsbc%3D

    Article  CAS  PubMed  Google Scholar 

  35. Jacinto R, Hartung T, McCall C, et al. Lipopolysaccharide- and lipoteichoic acid-induced tolerance and cross-tolerance: Distinct alterations in IL-1 receptor-associated kinase. J Immunol, 2002, 168: 6136–6141, 12055225, 1:CAS:528:DC%2BD38XksFWmt70%3D

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Commane M, Burns C, et al. Mutant cells that do not respond to interleukin-1 (IL-1) reveal a novel role for IL-1 receptor-associated kinase. Mol Cell Biol, 1999, 19: 4643–4652, 10373513, 1:CAS:528:DyaK1MXktVCgs7c%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jensen L E, Whitehead A S. IRAK1b, a novel alternative splice variant of interleukin-1 receptor-associated kinase (IRAK), mediates interleukin-1 signaling and has prolonged stability. J Biol Chem, 2001, 276: 29037–29044, 10.1074/jbc.M103815200, 11397809, 1:CAS:528:DC%2BD3MXlvFSqsL8%3D

    Article  CAS  PubMed  Google Scholar 

  38. Rao N, Nguyen S, Ngo K, et al. A novel splice variant of interleukin-1 receptor (IL-1R)-associated kinase 1 plays a negative regulatory role in Toll/IL-1R-induced inflammatory signaling. Mol Cell Biol, 2005, 25: 6521–6532, 10.1128/MCB.25.15.6521-6532.2005, 16024789, 1:CAS:528:DC%2BD2MXntVShurc%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hardy M P, O’Neill L A. The murine IRAK2 gene encodes four alternatively spliced isoforms, two of which are inhibitory. J Biol Chem, 2004, 279: 27699–27708, 10.1074/jbc.M403068200, 15082713, 1:CAS:528:DC%2BD2cXkvFGnurY%3D

    Article  CAS  PubMed  Google Scholar 

  40. Wang C, Deng L, Hong M, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001, 412: 346–351, 10.1038/35085597, 11460167, 1:CAS:528:DC%2BD3MXlsFGjsLs%3D

    Article  CAS  PubMed  Google Scholar 

  41. Kawai T, Sato S, Ishii K J, et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol, 2004, 5: 1061–1068, 10.1038/ni1118, 15361868, 1:CAS:528:DC%2BD2cXnvFCgs7w%3D

    Article  CAS  PubMed  Google Scholar 

  42. Hacker H, Redecke V, Blagoev B, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature, 2006, 439: 204–207, 10.1038/nature04369, 16306937, 1:CAS:528:DC%2BD28XislKhtA%3D%3D

    Article  PubMed  Google Scholar 

  43. Oganesyan G, Saha S K, Guo B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature, 2006, 439: 208–211, 10.1038/nature04374, 16306936, 1:CAS:528:DC%2BD28XislKhtQ%3D%3D

    Article  CAS  PubMed  Google Scholar 

  44. Zarnegar B J, Wang Y, Mahoney D J, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol, 2008, 9: 1371–1378, 10.1038/ni.1676, 18997794, 1:CAS:528:DC%2BD1cXhtlOjsbrM

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zarnegar B, Yamazaki S, He J Q, et al. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci USA, 2008, 105: 3503–3508, 10.1073/pnas.0707959105, 18292232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sato S, Sanjo H, Takeda K, et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol, 2005, 6: 1087–1095, 10.1038/ni1255, 16186825, 1:CAS:528:DC%2BD2MXhtFamsb7K

    Article  CAS  PubMed  Google Scholar 

  47. Takaesu G, Kishida S, Hiyama A, et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell, 2000, 5: 649–658, 10.1016/S1097-2765(00)80244-0, 10882101, 1:CAS:528:DC%2BD3cXjtFSqt7w%3D

    Article  CAS  PubMed  Google Scholar 

  48. Xia Z P, Sun L, Chen X, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature, 2009, 7620: 114–119, 10.1038/nature08247, 1:CAS:528:DC%2BD1MXpsleru70%3D

    Article  Google Scholar 

  49. Liu X, Yao M, Li N, et al. CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages. Blood, 2008, 112: 4961–4970, 10.1182/blood-2008-03-144022, 18818394, 1:CAS:528:DC%2BD1cXhsFWms73N

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto M, Sato S, Mori K, et al. Cutting edge: A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol, 2002, 169: 6668–6672, 12471095, 1:CAS:528:DC%2BD38XpsFCqu74%3D

    Article  CAS  PubMed  Google Scholar 

  51. Hoebe K, Du X, Georgel P, et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature, 2003, 424: 743–748, 10.1038/nature01889, 12872135, 1:CAS:528:DC%2BD3sXmt1ant7w%3D

    Article  CAS  PubMed  Google Scholar 

  52. Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 2003, 301: 640–643, 10.1126/science.1087262, 12855817, 1:CAS:528:DC%2BD3sXlvVKnsLs%3D

    Article  CAS  PubMed  Google Scholar 

  53. Oshiumi H, Matsumoto M, Funami K, et al. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol, 2003, 4: 161–167, 10.1038/ni886, 12539043, 1:CAS:528:DC%2BD3sXmslKisA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  54. Sato S, Sugiyama M, Yamamoto M, et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol, 2003, 171: 4304–4310, 14530355, 1:CAS:528:DC%2BD3sXnvVOkt7Y%3D

    Article  CAS  PubMed  Google Scholar 

  55. Jiang Z, Mak T W, Sen G, et al. Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc Natl Acad Sci USA, 2004, 101: 3533–3538, 10.1073/pnas.0308496101, 14982987, 1:CAS:528:DC%2BD2cXisFWmtrw%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. An H, Hou J, Zhou J, et al. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol, 2008, 9: 542–550, 10.1038/ni.1604, 18391954, 1:CAS:528:DC%2BD1cXkvVOqtbo%3D

    Article  CAS  PubMed  Google Scholar 

  57. Wietek C, Miggin S M, Jefferies C A, et al. Interferon regulatory factor-3-mediated activation of the interferon-sensitive response element by Toll-like receptor (TLR) 4 but not TLR3 requires the p65 subunit of NF-kappa. J Biol Chem, 2003, 278: 50923–50931, 10.1074/jbc.M308135200, 14557267, 1:CAS:528:DC%2BD3sXpslOhsr0%3D

    Article  CAS  PubMed  Google Scholar 

  58. Palsson-McDermott E M, Doyle S L, McGettrick A F, et al. TAG, a splice variant of the adaptor TRAM, negatively regulates the adaptor MyD88-independent TLR4 pathway. Nat Immunol, 2009, 10: 579–586, 10.1038/ni.1727, 19412184, 1:CAS:528:DC%2BD1MXltlSrsbs%3D

    Article  CAS  PubMed  Google Scholar 

  59. Brint E K, Xu D, Liu H, et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat Immunol, 2004, 5: 373–379, 10.1038/ni1050, 15004556, 1:CAS:528:DC%2BD2cXisF2ktb8%3D

    Article  CAS  PubMed  Google Scholar 

  60. Sweet M J, Leung B P, Kang D, et al. A novel pathway regulating lipopolysaccharide-induced shock by ST2/T1 via inhibition of Toll-like receptor 4 expression. J Immunol, 2001, 166: 6633–6639, 11359817, 1:CAS:528:DC%2BD3MXjvFartbk%3D

    Article  CAS  PubMed  Google Scholar 

  61. Wald D, Qin J, Zhao Z, et al. SIGIR R, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol, 2003, 4: 920–927, 10.1038/ni968, 12925853, 1:CAS:528:DC%2BD3sXms12gtLw%3D

    Article  CAS  PubMed  Google Scholar 

  62. Divanovic S, Trompette A, Atabani S F, et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105. Nat Immunol, 2005, 6: 571–578, 10.1038/ni1198, 15852007, 1:CAS:528:DC%2BD2MXktlWitrg%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Diehl G E, Yue H H, Hsieh K, et al. TRAIL-R as a negative regulator of innate immune cell responses. Immunity, 2004, 21: 877–889, 10.1016/j.immuni.2004.11.008, 15589175, 1:CAS:528:DC%2BD2MXjvFGjuw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  64. Rui Y, Liu X, Li N, et al. PECAM-1 ligation negatively regulates TLR4 signaling in macrophages. J Immunol, 2007, 179: 7344–7351, 18025177, 1:CAS:528:DC%2BD2sXhtlajt7%2FE

    Article  CAS  PubMed  Google Scholar 

  65. Hamerman J A, Tchao N K, Lowell C A, et al. Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol, 2005, 6: 579–586, 10.1038/ni1204, 15895090, 1:CAS:528:DC%2BD2MXktlWit7w%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Turnbull I R, McDunn J E, Takai T, et al. DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis. J Exp Med, 2005, 202: 363–369, 10.1084/jem.20050986, 16061725, 1:CAS:528:DC%2BD2MXntFCjt7s%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carty M, Goodbody R, Schroder M, et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol, 2006, 7: 1074–1081, 10.1038/ni1382, 16964262, 1:CAS:528:DC%2BD28Xps1yntbk%3D

    Article  CAS  PubMed  Google Scholar 

  68. Burns K, Clatworthy J, Martin L, et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol, 2000, 2: 346–351, 10.1038/35014038, 10854325, 1:CAS:528:DC%2BD3cXlt1Sls7k%3D

    Article  CAS  PubMed  Google Scholar 

  69. Bulut Y, Faure E, Thomas L, et al. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: Role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol, 2001, 167: 987–994, 11441107, 1:CAS:528:DC%2BD3MXotFWktLs%3D

    Article  CAS  PubMed  Google Scholar 

  70. Zhang G, Ghosh S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem, 2002, 277: 7059–7065, 10.1074/jbc.M109537200, 11751856, 1:CAS:528:DC%2BD38XitV2murw%3D

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y, Tang Y, Teng L, et al. Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol, 2006, 7: 139–147, 10.1038/ni1294, 16378096, 1:CAS:528:DC%2BD28Xlt1ersw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  72. Kawagoe T, Takeuchi O, Takabatake Y, et al. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol, 2009, 10: 965–972, 10.1038/ni.1771, 19668221, 1:CAS:528:DC%2BD1MXps1ahtLk%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhao Q, Wang X, Nelin L D, et al. MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med, 2006, 203: 131–140, 10.1084/jem.20051794, 16380513, 1:CAS:528:DC%2BD28XhtVyru70%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hammer M, Mages J, Dietrich H, et al. Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med, 2006, 203: 15–20, 10.1084/jem.20051753, 16380512, 1:CAS:528:DC%2BD28XhtVyrur4%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chi H, Barry S P, Roth R J, et al. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci USA, 2006, 103: 2274–2279, 10.1073/pnas.0510965103, 16461893, 1:CAS:528:DC%2BD28XhslGjsbc%3D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jeffrey K L, Brummer T, Rolph M S, et al. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat Immunol, 2006, 7: 274–283, 10.1038/ni1310, 16474395, 1:CAS:528:DC%2BD28XhsVSrs70%3D

    Article  CAS  PubMed  Google Scholar 

  77. Xu H, An H, Hou J, et al. Phosphatase PTP1B negatively regulates MyD88- and TRIF-dependent proinflammatory cytokine and type I interferon production in TLR-triggered macrophages. Mol Immunol, 2008, 45: 3545–3552, 10.1016/j.molimm.2008.05.006, 18571728, 1:CAS:528:DC%2BD1cXosVajsLg%3D

    Article  CAS  PubMed  Google Scholar 

  78. An H, Zhao W, Hou J, et al. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity, 2006, 25: 919–928, 10.1016/j.immuni.2006.10.014, 17157040, 1:CAS:528:DC%2BD2sXisFeitw%3D%3D

    Article  CAS  PubMed  Google Scholar 

  79. Chuang T H, Ulevitch R J. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol, 2004, 5: 495–502, 10.1038/ni1066, 15107846, 1:CAS:528:DC%2BD2cXjsV2gurk%3D

    Article  CAS  PubMed  Google Scholar 

  80. Wang Y, Chen T, Han C, et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood, 2007, 110: 962–971, 10.1182/blood-2007-01-066027, 17395780, 1:CAS:528:DC%2BD2sXos1Cqsbg%3D

    Article  CAS  PubMed  Google Scholar 

  81. Yao M, Liu X, Li D, et al. Late endosome/lysosome-localized Rab7b suppresses TLR9-initiated proinflammatory cytokine and type I IFN production in macrophages. J Immunol, 2009, 183: 1751–1758, 10.4049/jimmunol.0900249, 19587007, 1:CAS:528:DC%2BD1MXoslCrsr8%3D

    Article  CAS  PubMed  Google Scholar 

  82. Kinjyo I, Hanada T, Inagaki-Ohara K, et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity, 2002, 17: 583–591, 10.1016/S1074-7613(02)00446-6, 12433365, 1:CAS:528:DC%2BD38XovF2lsro%3D

    Article  CAS  PubMed  Google Scholar 

  83. Nakagawa R, Naka T, Tsutsui H, et al. SOCS-1 participates in negative regulation of LPS responses. Immunity, 2002, 17: 677–687, 10.1016/S1074-7613(02)00449-1, 12433373, 1:CAS:528:DC%2BD38XovF2ls7w%3D

    Article  CAS  PubMed  Google Scholar 

  84. Mansell A, Smith R, Doyle S L, et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol, 2006, 7: 148–155, 10.1038/ni1299, 16415872, 1:CAS:528:DC%2BD28Xlt1ertg%3D%3D

    Article  CAS  PubMed  Google Scholar 

  85. Gingras S, Parganas E, de Pauw A, et al. Re-examination of the role of suppressor of cytokine signaling 1 (SOCS1) in the regulation of toll-like receptor signaling. J Biol Chem, 2004, 279: 54702–54707, 10.1074/jbc.M411043200, 15491990, 1:CAS:528:DC%2BD2cXhtVylurvF

    Article  CAS  PubMed  Google Scholar 

  86. Baetz A, Frey M, Heeg K, et al. Suppressor of cytokine signaling (SOCS) proteins indirectly regulate toll-like receptor signaling in innate immune cells. J Biol Chem, 2004, 279: 54708–54715, 10.1074/jbc.M410992200, 15491991, 1:CAS:528:DC%2BD2cXhtVylurjN

    Article  CAS  PubMed  Google Scholar 

  87. Boone D L, Turer E E, Lee E G, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol, 2004, 5: 1052–1060, 10.1038/ni1110, 15334086, 1:CAS:528:DC%2BD2cXnvFCgsro%3D

    Article  CAS  PubMed  Google Scholar 

  88. Saitoh T, Yamamoto M, Miyagishi M, et al. A20 is a negative regulator of IFN regulatory factor 3 signaling. J Immunol, 2005, 174: 1507–1512, 15661910, 1:CAS:528:DC%2BD2MXlsFymsA%3D%3D

    Article  CAS  PubMed  Google Scholar 

  89. Bignell G R, Warren W, Seal S, et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet, 2000, 25: 160–165, 10.1038/76006, 10835629, 1:CAS:528:DC%2BD3cXjvFOgt7g%3D

    Article  CAS  PubMed  Google Scholar 

  90. Kovalenko A, Chable-Bessia C, Cantarella G, et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature, 2003, 424: 801–805, 10.1038/nature01802, 12917691, 1:CAS:528:DC%2BD3sXmt1ansbY%3D

    Article  CAS  PubMed  Google Scholar 

  91. Brummelkamp T R, Nijman S M, Dirac A M, et al. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature, 2003, 424: 797–801, 10.1038/nature01811, 12917690, 1:CAS:528:DC%2BD3sXmt1antr4%3D

    Article  CAS  PubMed  Google Scholar 

  92. Trompouki E, Hatzivassiliou E, Tsichritzis T, et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature, 2003, 424: 793–796, 10.1038/nature01803, 12917689, 1:CAS:528:DC%2BD3sXmt1ansbc%3D

    Article  CAS  PubMed  Google Scholar 

  93. Yoshida H, Jono H, Kai H, et al. The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 AND TRAF7. J Biol Chem, 2005, 280: 41111–41121, 10.1074/jbc.M509526200, 16230348, 1:CAS:528:DC%2BD2MXht1Oqt7rP

    Article  CAS  PubMed  Google Scholar 

  94. Wang C, Chen T, Zhang J, et al. The E3 ubiquitin ligase Nrdp1’ preferentially’ promotes TLR-mediated production of type I interferon. Nat Immunol 2009, 10: 744–752, 10.1038/ni.1742, 19483718, 1:CAS:528:DC%2BD1MXms1alt7s%3D

    Article  CAS  PubMed  Google Scholar 

  95. Shi M, Deng W, Bi E, et al. TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat Immunol, 2008, 9: 369–377, 10.1038/ni1577, 18345001, 1:CAS:528:DC%2BD1cXjtlGmsLY%3D

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HuaZhang An or XueTao Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, H., Qian, C. & Cao, X. Regulation of Toll-like receptor signaling in the innate immunity. Sci. China Life Sci. 53, 34–43 (2010). https://doi.org/10.1007/s11427-010-0011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-0011-x

Keywords

Navigation