Skip to main content
Log in

microRNAs - powerful repression comes from small RNAs

  • Special Topic Review
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) encode a novel class of small, non-coding RNAs that regulate gene expression post-trancriptionally. miRNAs comprise one of the major non-coding RNA families, whose diverse biological functions and unusual capacity for gene regulation have attracted enormous interests in the RNA world. Over the past 16 years, genetic, biochemical and computational approaches have greatly shaped the growth of the field, leading to the identification of thousands of miRNA genes in nearly all metazoans. The key molecular machinery for miRNA biogenesis and silencing has been identified, yet the precise biochemical and regulatory mechanisms still remain elusive. However, recent findings have shed new light on how miRNAs are generated and how they function to repress gene expression. miRNAs provide a paradigm for endogenous small RNAs that mediate gene silencing at a genome-wide level. The gene silencing mediated by these small RNAs constitutes a major component of gene regulation during various developmental and physiological processes. The accumulating knowledge about their biogenesis and gene silencing mechanism will add a new dimension to our understanding about the complex gene regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75: 843–854 8252621, 10.1016/0092-8674(93)90529-Y, 1:CAS:528:DyaK2cXpslGqtA%3D%3D

    Article  CAS  Google Scholar 

  2. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75: 855–862 8252622, 10.1016/0092-8674(93)90530-4, 1:CAS:528:DyaK2cXislyisA%3D%3D

    Article  CAS  Google Scholar 

  3. Slack F J, Basson M, Liu Z, et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell, 2000, 5: 659–669 10882102, 10.1016/S1097-2765(00)80245-2, 1:CAS:528:DC%2BD3cXjtFSqt70%3D

    Article  CAS  Google Scholar 

  4. Zamore P D, Haley B. Ribo-gnome: the big world of small RNAs. Science, 2005, 309: 1519–1524 16141061, 10.1126/science.1111444, 1:CAS:528:DC%2BD2MXpsFWisrg%3D

    Article  CAS  Google Scholar 

  5. Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391: 806–811 9486653, 10.1038/35888, 1:CAS:528:DyaK1cXhtlCju74%3D

    Article  CAS  Google Scholar 

  6. Hamilton A J, Baulcombe D C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286: 950–952 10542148, 10.1126/science.286.5441.950, 1:CAS:528:DyaK1MXntFaktbY%3D

    Article  CAS  Google Scholar 

  7. Ambros V. The functions of animal microRNAs. Nature, 2004, 431: 350–355 15372042, 10.1038/nature02871, 1:CAS:528:DC%2BD2cXnsFaiu7g%3D

    Article  CAS  Google Scholar 

  8. Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116: 281–97 14744438, 10.1016/S0092-8674(04)00045-5, 1:CAS:528:DC%2BD2cXhtVals7o%3D

    Article  CAS  Google Scholar 

  9. He L, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004, 5: 522–531 15211354, 10.1038/nrg1379, 1:CAS:528:DC%2BD2cXltVSmsbw%3D

    Article  CAS  Google Scholar 

  10. Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science, 2001, 294: 853–858 11679670, 10.1126/science.1064921, 1:CAS:528:DC%2BD3MXotVChtb8%3D

    Article  CAS  Google Scholar 

  11. Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001, 294: 862–864 11679672, 10.1126/science.1065329, 1:CAS:528:DC%2BD3MXotVChu70%3D

    Article  CAS  Google Scholar 

  12. Lau N C, Lim L P, Weinstein E G, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294: 858–862 11679671, 10.1126/science.1065062, 1:CAS:528:DC%2BD3MXotVChurw%3D

    Article  CAS  Google Scholar 

  13. Lee Y, Jeon K, Lee J T, et al. MicroRNA maturation: stepwise processing and subcellular localization. Embo J, 2002, 21: 4663–4670 12198168, 10.1093/emboj/cdf476, 1:CAS:528:DC%2BD38Xms1KmsL4%3D

    Article  CAS  Google Scholar 

  14. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425: 415–419 14508493, 10.1038/nature01957, 1:CAS:528:DC%2BD3sXnsV2kt7s%3D

    Article  CAS  Google Scholar 

  15. Denli A M, Tops B B, Plasterk R H, et al. Processing of primary microRNAs by the Microprocessor complex. Nature, 2004, 432: 231–235 15531879, 10.1038/nature03049, 1:CAS:528:DC%2BD2cXpsF2gtrY%3D

    Article  CAS  Google Scholar 

  16. Han J, Lee Y, Yeom K H, et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev, 2004, 18: 3016–3027 15574589, 10.1101/gad.1262504, 1:CAS:528:DC%2BD2MXhtFaguw%3D%3D

    Article  CAS  Google Scholar 

  17. Han J, Lee Y, Yeom K H, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006, 125: 887–901 16751099, 10.1016/j.cell.2006.03.043, 1:CAS:528:DC%2BD28Xls1Shtr4%3D

    Article  CAS  Google Scholar 

  18. Berezikov E, Chung W J, Willis J, et al. Mammalian mirtron genes. Mol Cell, 2007, 28: 328–336 17964270, 10.1016/j.molcel.2007.09.028, 1:CAS:528:DC%2BD2sXhtlShtr7J

    Article  CAS  Google Scholar 

  19. Okamura K, Hagen J W, Duan H, et al. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell, 2007, 130: 89–100 17599402, 10.1016/j.cell.2007.06.028, 1:CAS:528:DC%2BD2sXotlGmtrY%3D

    Article  CAS  Google Scholar 

  20. Ruby J G, Jan C H, Bartel D P. Intronic microRNA precursors that bypass Drosha processing. Nature, 2007, 448: 83–86 17589500, 10.1038/nature05983, 1:CAS:528:DC%2BD2sXnt1entL8%3D

    Article  CAS  Google Scholar 

  21. Yi R, Qin Y, Macara I G, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003, 17: 3011–3016 14681208, 10.1101/gad.1158803, 1:CAS:528:DC%2BD2cXhs1Shsg%3D%3D

    Article  CAS  Google Scholar 

  22. Hutvágner G, McLachlan J, Pasquinelli A E, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001, 293: 834–838 11452083, 10.1126/science.1062961

    Article  Google Scholar 

  23. Viswanathan S R, Daley G Q, Gregory R I. Selective blockade of microRNA processing by Lin28. Science, 2008, 320: 97–100 18292307, 10.1126/science.1154040, 1:CAS:528:DC%2BD1cXktVKht7k%3D

    Article  CAS  Google Scholar 

  24. Heo I, Joo C, Cho J, et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell, 2008, 32: 276–284 18951094, 10.1016/j.molcel.2008.09.014, 1:CAS:528:DC%2BD1cXhtlehsbrF

    Article  CAS  Google Scholar 

  25. Newman M A, Thomson J M, Hammond S M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA, 2008, 14: 1539–1549 18566191, 10.1261/rna.1155108, 1:CAS:528:DC%2BD1cXpsVyitrs%3D

    Article  CAS  Google Scholar 

  26. Schwarz D S, Hutvágner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003, 115: 199–208 14567917, 10.1016/S0092-8674(03)00759-1, 1:CAS:528:DC%2BD3sXosFCqsLo%3D

    Article  CAS  Google Scholar 

  27. MacRae I J, Ma E, Zhou M, et al. In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci USA, 2008, 105: 512–517 18178619, 10.1073/pnas.0710869105, 1:CAS:528:DC%2BD1cXpvV2lsg%3D%3D

    Article  CAS  Google Scholar 

  28. Lewis B P, Shih I H, Jones-Rhoades M W, et al. Prediction of mammalian microRNA targets. Cell, 2003, 115: 787–798 14697198, 10.1016/S0092-8674(03)01018-3, 1:CAS:528:DC%2BD2cXhsFCnsw%3D%3D

    Article  CAS  Google Scholar 

  29. Grimson A, Farh K K, Johnston W K, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell, 2007, 27: 91–105 17612493, 10.1016/j.molcel.2007.06.017, 1:CAS:528:DC%2BD2sXot1els7Y%3D

    Article  CAS  Google Scholar 

  30. Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120: 15–20 15652477, 10.1016/j.cell.2004.12.035, 1:CAS:528:DC%2BD2MXot1ChsA%3D%3D

    Article  CAS  Google Scholar 

  31. Rajewsky N. microRNA target predictions in animals. Nat Genet, 2006, 38(Suppl): S8–13 16736023, 10.1038/ng1798, 1:CAS:528:DC%2BD28XltVOmtL4%3D

    Article  CAS  Google Scholar 

  32. Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output. Nature, 2008, 455: 64–71 18668037, 10.1038/nature07242, 1:CAS:528:DC%2BD1cXhtVKrsbjF

    Article  CAS  Google Scholar 

  33. Selbach M, Schwanhäusser B, Thierfelder N, et al. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455: 58–63 18668040, 10.1038/nature07228, 1:CAS:528:DC%2BD1cXhtVKrsbnK

    Article  CAS  Google Scholar 

  34. Olsen P H, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol, 1999, 216: 671–680 10642801, 10.1006/dbio.1999.9523, 1:CAS:528:DC%2BD3cXltFyqtA%3D%3D

    Article  CAS  Google Scholar 

  35. Filipowicz W, Bhattacharyya S N, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 2008, 9: 102–114 18197166, 10.1038/nrg2290, 1:CAS:528:DC%2BD1cXnt1ensA%3D%3D

    Article  CAS  Google Scholar 

  36. Humphreys D T, Westman B J, Martin D I, et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA, 2005, 102: 16961–16966 16287976, 10.1073/pnas.0506482102, 1:CAS:528:DC%2BD2MXht1yksLvJ

    Article  CAS  Google Scholar 

  37. Pillai R S, Bhattacharyya S N, Artus C G, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science, 2005, 309: 1573–1576 16081698, 10.1126/science.1115079, 1:CAS:528:DC%2BD2MXpsFWju7k%3D

    Article  CAS  Google Scholar 

  38. Wakiyama M, Takimoto K, Ohara O, et al. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev, 2007, 21: 1857–1862 17671087, 10.1101/gad.1566707, 1:CAS:528:DC%2BD2sXps1alsr4%3D

    Article  CAS  Google Scholar 

  39. Wang B, Love T M, Call M E, et al. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell, 2006, 22: 553–560 16713585, 10.1016/j.molcel.2006.03.034, 1:CAS:528:DC%2BD28XlsFWhs78%3D

    Article  CAS  Google Scholar 

  40. Kiriakidou M, Tan G S, Lamprinaki S, et al. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell, 2007, 129: 1141–1151 17524464, 10.1016/j.cell.2007.05.016, 1:CAS:528:DC%2BD2sXntVOnt70%3D

    Article  CAS  Google Scholar 

  41. Eulalio A, Huntzinger E, Izaurralde E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol, 2008, 15: 346–353 18345015, 10.1038/nsmb.1405, 1:CAS:528:DC%2BD1cXktFyjtLc%3D

    Article  CAS  Google Scholar 

  42. Maroney P A, Yu Y, Fisher J, et al. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol, 2006, 13: 1102–1107 17128271, 10.1038/nsmb1174, 1:CAS:528:DC%2BD28Xht1KrurnF

    Article  CAS  Google Scholar 

  43. Nottrott S, Simard M J, Richter J D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol, 2006, 13: 1108–1114 17128272, 10.1038/nsmb1173, 1:CAS:528:DC%2BD28Xht1KrurnE

    Article  CAS  Google Scholar 

  44. Petersen C P, Bordeleau M E, Pelletier J, et al. Short RNAs repress translation after initiation in mammalian cells. Mol Cell, 2006, 21: 533–542 16483934, 10.1016/j.molcel.2006.01.031, 1:CAS:528:DC%2BD28XisVansbs%3D

    Article  CAS  Google Scholar 

  45. Thermann R, Hentze M W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature, 2007, 447: 875–878 17507927, 10.1038/nature05878, 1:CAS:528:DC%2BD2sXms1Wjt78%3D

    Article  CAS  Google Scholar 

  46. Lim L P, Lau N C, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433: 769–773 15685193, 10.1038/nature03315, 1:CAS:528:DC%2BD2MXhtleqsLs%3D

    Article  CAS  Google Scholar 

  47. Bagga S, Bracht J, Hunter S, et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell, 2005, 122: 553–563 16122423, 10.1016/j.cell.2005.07.031, 1:CAS:528:DC%2BD2MXpvVKntbw%3D

    Article  CAS  Google Scholar 

  48. Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol, 2008, 20: 214–221 18329869, 10.1016/j.ceb.2008.01.006, 1:CAS:528:DC%2BD1cXks1Gnu7o%3D

    Article  CAS  Google Scholar 

  49. Behm-Ansmant I, Rehwinkel J, Doerks T, et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev, 2006, 20: 1885–1898 16815998, 10.1101/gad.1424106, 1:CAS:528:DC%2BD28XnsVyjt78%3D

    Article  CAS  Google Scholar 

  50. Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell, 2007, 25: 635–646 17349952, 10.1016/j.molcel.2007.02.011, 1:CAS:528:DC%2BD2sXjs1Kju7k%3D

    Article  CAS  Google Scholar 

  51. Liu J, Rivas F V, Wohlschlegel J, et al. A role for the P-body component GW182 in microRNA function. Nat Cell Biol, 2005, 7: 1261–1266 16284623

    Article  Google Scholar 

  52. Bhattacharyya S N, Habermacher R, Martine U, et al. Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp Quant Biol, 2006, 71: 513–521 17381334, 10.1101/sqb.2006.71.038, 1:CAS:528:DC%2BD2sXls1yrtbs%3D

    Article  CAS  Google Scholar 

  53. Sheth U, Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science, 2003, 300: 805–808 12730603, 10.1126/science.1082320, 1:CAS:528:DC%2BD3sXjtlSktL8%3D

    Article  CAS  Google Scholar 

  54. Leung A K, Calabrese J M, Sharp P A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc Natl Acad Sci USA, 2006, 103: 18125–18130 17116888, 10.1073/pnas.0608845103, 1:CAS:528:DC%2BD28XhtlWjt7zP

    Article  CAS  Google Scholar 

  55. Kedersha N, Stoecklin G, Ayodele M, et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol, 2005, 169: 871–884 15967811, 10.1083/jcb.200502088, 1:CAS:528:DC%2BD2MXls1Grt7k%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, C., Liu, Y. & He, L. microRNAs - powerful repression comes from small RNAs. SCI CHINA SER C 52, 323–330 (2009). https://doi.org/10.1007/s11427-009-0056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-009-0056-x

Keywords

Navigation