Skip to main content
Log in

A computational model for feature binding

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The “Binding Problem” is an important problem across many disciplines, including psychology, neuroscience, computational modeling, and even philosophy. In this work, we proposed a novel computational model, Bayesian Linking Field Model, for feature binding in visual perception, by combining the idea of noisy neuron model, Bayesian method, Linking Field Network and competitive mechanism. Simulation Experiments demonstrated that our model perfectly fulfilled the task of feature binding in visual perception and provided us some enlightening idea for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Damasio A R, Eslinger P, Damasio H, et al. Multimodal amnesic syndrome following bilateral temporal and basal forebrain damage. Arch Neurol, 1985, 42: 252–259 3977656, 1:STN:280:BiqC2cfmtlc%3D

    Article  CAS  Google Scholar 

  2. Livingstone M, Hubel D. Segregation of form, color, movement and depth: anatomy, physiology, and perception. Science, 1988, 240: 740–749 3283936, 10.1126/science.3283936, 1:STN:280:BieB3cvptFQ%3D

    Article  CAS  Google Scholar 

  3. Posner M I. Orienting of attention. Q J Exp Psychol, 1980, 32: 3–25 7367577, 10.1080/00335558008248231, 1:STN:280:Bi%2BC28jnvVA%3D

    Article  CAS  Google Scholar 

  4. Crick F. Functions of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci USA, 1984, 81: 4586–4590 6589612, 10.1073/pnas.81.14.4586, 1:STN:280:BiuB2s3mvVQ%3D

    Article  PubMed Central  CAS  Google Scholar 

  5. Sejnowski T J. Open questions about computation in cerebral cortex. In: McClelland J L, Rumelhart D E, eds. Parallel Distributed Processing. Cambridge: MIT Press, 1986, 372–389

    Google Scholar 

  6. Treisman A, Gelede G. A feature-integration theory of attention. Cognit Psychol, 1980, 12: 97–136 7351125, 10.1016/0010-0285(80)90005-5, 1:STN:280:Bi%2BD1M%2Fnslc%3D

    Article  CAS  Google Scholar 

  7. Albright T D, Kandel E R, Posner M I. Cognitive neuroscience. Curr Opin Neurobiol, 2000, 10(5): 612–624 11084324, 10.1016/S0959-4388(00)00132-X, 1:CAS:528:DC%2BD3cXosVGksrc%3D

    Article  CAS  Google Scholar 

  8. Damasio A R. The brain binds entities and events by multiregional activation from convergence zones. Neur Comput, 1989, 1: 123–132 10.1162/neco.1989.1.1.123

    Article  Google Scholar 

  9. Von der Malsburg C. Am I thinking assemblies? In: Pelm G, Aertsen A, eds. Brain Theory. Berlin: Springer-Verlag, 1986. 161–176

    Chapter  Google Scholar 

  10. Gray C M, König P, Engel A K, et al. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338: 334–337

  11. Guo A K. Emerging dynamic neuron assembly — new concept of brain temporal-spatial coding. Acta Biophys Sin, 1997, 13: 695–702

    Google Scholar 

  12. Horn D, Sagi D, Usher M. Segmentation, binding and illusory conjunctions. Neur Comput, 1991, 3: 510–525 10.1162/neco.1991.3.4.510

    Article  Google Scholar 

  13. Schillen T B, Koènig P. Binding by temporal structure in multiple feature domains of an oscillatory neuronal network. Biol Cybernet, 1994, 70: 397–405 10.1007/BF00203232, 1:STN:280:ByuB2c3otl0%3D

    Article  CAS  Google Scholar 

  14. Engel A K, Koènig P, Kreiter A K, et al. Temporal coding in the visual cortex: New vistas on integration in the nervous system. Trends Neurosci, 1992, 15: 218–226 1378666, 10.1016/0166-2236(92)90039-B, 1:STN:280:By2A3snjvVA%3D

    Article  CAS  Google Scholar 

  15. Eckhorn R, Reitboeck H J, Arndt M, et al. Feature linking via synchronization among distributed assemblies: Simulation of results from cat cortex. Neur Comput, 1990, 2: 293–307 10.1162/neco.1990.2.3.293

    Article  Google Scholar 

  16. Johnson J L, Padgett M L. PCNN models and applications. IEEE Trans on Neural Networks, 1999, 10(3): 480–498 10.1109/72.761706, 1:STN:280:DC%2BD1c%2FpsFSnsw%3D%3D

    Article  CAS  Google Scholar 

  17. Gerstner W, Kistler W M. Spiking Neuron Models: Single Neurons, Populations, Plasticity. London: Cambridge University Press, 2002

    Book  Google Scholar 

  18. Perry V H, Linden R. Evidence for dendritic competition in the developing retina. Nature, 1982, 297: 683–685. 7088156, 10.1038/297683a0, 1:STN:280:Bi2B38%2FgsVQ%3D

    Article  CAS  Google Scholar 

  19. Poldrack R A, Packard M G. Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia, 2003, 41(3): 241–244 10.1016/S0028-3932(02)00157-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiWei Shi.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60435010), National High-Tech Program (863 Program) of China (Grant No. 2006AA01Z128), National Basic Research Priorities Program of China (Grant No. 2007CB311004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Z., Shi, Z., Liu, X. et al. A computational model for feature binding. SCI CHINA SER C 51, 470–478 (2008). https://doi.org/10.1007/s11427-008-0063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0063-3

Key words

Navigation