Skip to main content
Log in

A seed-specific AP2-domain transcription factor from soybean plays a certain role in regulation of seed germination

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Plant seed development and germination are under strict temporal and spatial regulation, and transcription factors play important roles in this regulation. In the present study we identified an EST expressed specifically in the developing soybean seeds. The full length of the gene was obtained through further RACE analysis and the gene was named GmSGR. Sequence analysis revealed that this gene belonged to the AP2/ERF transcription factor family. Its AP2 domain had the highest similarity with that of the A-3 member AtABI4 of DREB subgroup in the AP2/ERF family in Arabidopsis. GmSGR did not exhibit transcriptional activation activity in the yeast assay system. GmSGR was overexpressed in Arabidopsis and the germination rates of the transgenic seeds were significantly higher than that of the wild type seeds under higher concentrations of ABA and glucose respectively. However, the germination rates of the transgenic seeds were lower than that of control under salt stress. The expression of AtEm6 and AtRD29B was higher in the seedlings of the transgenic plants than that in the wild-type seedlings. These results suggest that GmSGR may confer reduced ABA sensitivity and enhanced salt sensitivity to the transgenic seeds through regulating the expression of AtEm6 and AtRD29B genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koornneef M, Bentsink L, Hilhorst H. Seed dormancy and germination. Curr Opin Plant Biol, 2002, 5: 33–36,11788305, 10.1016/S1369-5266(01)00219-9, 1:CAS:528:DC%2BD38Xitlejtw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  2. Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res, 2005, 15: 281–307,10.1079/SSR2005218, 1:CAS:528:DC%2BD28XhsFGrtr0%3D

    Article  CAS  Google Scholar 

  3. Jacobsen J V, Pearce D W, Poole A T, et al. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol Plant, 2002, 115: 428–441, 12081536, 10.1034/j.1399-3054.2002.1150313.x, 1:CAS:528:DC%2BD38XlsVGitLo%3D

    Article  PubMed  CAS  Google Scholar 

  4. Ali-Rachedi S, Bouinot D, Wagner M H, et al. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: Studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta, 2004, 219: 479–488, 15060827, 10.1007/s00425-004-1251-4, 1:CAS:528:DC%2BD2cXlsVCktbg%3D

    Article  PubMed  CAS  Google Scholar 

  5. Finkelstein R R. Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J, 1994, 5: 765–771, 10.1046/j.1365-313X.1994.5060765.x

    Article  Google Scholar 

  6. Nambara E, Naito S, McCourt P. A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J, 1992, 2: 435–441, 10.1111/j.1365-313X.1992.00435.x, 1:CAS:528:DyaK38XlsVOgsr4%3D

    Article  CAS  Google Scholar 

  7. Giraudat J, Hauge B M, Valon C, et al. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992, 4: 1251–1261,1359917, 10.1105/tpc.4.10.1251, 1:CAS:528:DyaK3sXit1KqtbY%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Finkelstein R R, Wang M L, Lynch T J, et al. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell, 1998, 10: 1043–1054, 9634591, 10.1105/tpc.10.6.1043, 1:CAS:528:DyaK1cXktl2gt7Y%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Arenas-Huertero F, Arroyo A, Zhou L, et al. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev, 2000, 14: 2085–2096, 10950871, 1:CAS:528:DC%2BD3cXmtFShu7k%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Huijser C, Kortstee A, Pego J, et al. The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: Involvement of abscisic acid in sugar responses. Plant J, 2000, 23:577–585, 10972884, 10.1046/j.1365-313x.2000.00822.x, 1:CAS:528:DC%2BD3cXntFOiu7s%3D

    Article  PubMed  CAS  Google Scholar 

  11. Laby R J, Kincaid M S, Kim D, et al. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J, 2000, 23: 587–596, 10972885, 10.1046/j.1365-313x.2000.00833.x, 1:CAS:528:DC%2BD3cXntFOiu7g%3D

    Article  PubMed  CAS  Google Scholar 

  12. Rook F, Corke F, Card R, et al. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J, 2001, 26: 421–433, 11439129, 10.1046/j.1365-313X.2001.2641043.x, 1:CAS:528:DC%2BD3MXlsVynt7c%3D

    Article  PubMed  CAS  Google Scholar 

  13. Niu X, Helentjaris T, Bate N J. Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell, 2002, 14:2565–2575, 12368505, 10.1105/tpc.003400, 1:CAS:528:DC%2BD38XotFelsLY%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Peng J, Harberd N P. The role of GA-mediated signalling in the control of seed germination. Curr Opin Plant Biol, 2002, 5: 376–381,12183174, 10.1016/S1369-5266(02)00279-0, 1:CAS:528:DC%2BD38XmtlGjt7k%3D

    Article  PubMed  CAS  Google Scholar 

  15. Steber C M, Cooney S E, McCourt P. Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics, 1998, 149: 509–521, 9611170, 1:CAS:528:DyaK1cXks1ehs7w%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Griffiths J, Murase K, Rieu I, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18: 3399–3414,17194763, 10.1105/tpc.106.047415, 1:CAS:528:DC%2BD2sXhvVKrur8%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Tyler L, Thomas S G, Hu J, et al. Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol, 2004, 135: 1008–1019,15173565, 10.1104/pp.104.039578, 1:CAS:528:DC%2BD2cXltlKisrc%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Jacobsen S E, Olszewski N E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell, 1993, 5:887–896, 8400871, 10.1105/tpc.5.8.887, 1:CAS:528:DyaK2cXht12lt7o%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Dekkers B J, Schuurmans J A, Smeekens S C. Glucose delays seed germination in Arabidopsis thaliana. Planta, 2004, 218: 579–588,14648119, 10.1007/s00425-003-1154-9, 1:CAS:528:DC%2BD2cXhtFGjtb0%3D

    Article  PubMed  CAS  Google Scholar 

  20. Price J, Li T C, Kang S G, et al. Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol, 2003, 132: 1424–1438,12857824, 10.1104/pp.103.020347, 1:CAS:528:DC%2BD3sXlsFGhur4%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Yuan K, Wysocka-Diller J. Phytohormone signaling pathways interact with sugars during seed germination and seedling development. J Exp Bot, 2006, 57: 3359–3367,16916886, 10.1093/jxb/erl096, 1:CAS:528:DC%2BD28Xps1ygtLw%3D

    Article  PubMed  CAS  Google Scholar 

  22. Jofuku K D, den Boer B G, Van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell, 1994, 6: 1211–1225, 7919989, 10.1105/tpc.6.9.1211, 1:CAS:528:DyaK2MXpsFOjsA%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun, 2002, 290: 998–1009, 11798174, 10.1006/bbrc.2001.6299, 1:CAS:528:DC%2BD38XksVyquw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  24. Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406, 9707537, 10.1105/tpc.10.8.1391, 1:CAS:528:DyaK1cXls1SisLs%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Pandey G K, Grant J J, Cheong Y H, et al. ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol, 2005, 139: 1185–1193, 16227468, 10.1104/pp.105.066324, 1:CAS:528:DC%2BD2MXht1Ogu7%2FN

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Zhang J S, Zhou J M, Zhang C, et al. Differential gene expression in a salt-tolerance rice mutant and its parental variety. Sci China Ser C-Life Sci (in Chinese), 1996, 39: 310–319

    Google Scholar 

  27. Gosti F, Beaudoin N, Serizet C, et al. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell, 1999, 11:897–1910,10.1105/tpc.11.10.1897

    Article  Google Scholar 

  28. Li X P, Tian A G, Luo G Z, et al. Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theor Appl Genet, 2005, 110: 1355–1362, 15841365, 10.1007/s00122-004-1867-6, 1:CAS:528:DC%2BD2MXkvFSru78%3D

    Article  PubMed  CAS  Google Scholar 

  29. Chen M, Wang Q Y, Cheng X G, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun, 2007, 353: 299–305, 17178106, 10.1016/j.bbrc.2006.12.027, 1:CAS:528:DC%2BD2sXhvVSkuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  30. Lee S, Cheng H, King K E, et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev, 2002, 16: 646–658, 11877383, 10.1101/gad.969002, 1:CAS:528:DC%2BD38XitVWltbY%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Soderman E M, Brocard I M, Lynch T J, et al. Regulation and function of the Arabidopsis ABA-insensitive4 gene in seed and abscisic acid response signaling networks. Plant Physiol, 2000, 124: 1752–1765,11115891, 10.1104/pp.124.4.1752, 1:CAS:528:DC%2BD3MXitVWrsQ%3D%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Gaubier P, Raynal M, Hull G, et al. Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Gen Genet, 1993, 238: 409–418,8492809, 10.1007/BF00292000, 1:CAS:528:DyaK3sXlsFeisr4%3D

    Article  PubMed  CAS  Google Scholar 

  33. Hughes D W, Galau G A. Temporally modular gene expression during cotyledon development. Genes Dev, 1989, 3: 358–369, 2721959, 10.1101/gad.3.3.358, 1:CAS:528:DyaL1MXksFChtL8%3D

    Article  PubMed  CAS  Google Scholar 

  34. Swire-Clark G A, Marcotte W R. The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisiae. Plant Mol Biol, 1999, 39: 117–128,10080714, 10.1023/A:1006106906345, 1:CAS:528:DyaK1MXhvVynu7w%3D

    Article  PubMed  CAS  Google Scholar 

  35. Vicient C M, Hull G, Guilleminot J, et al. Differential expression of the Arabidopsis genes coding for Em-like proteins. J Exp Bot, 2000, 51: 1211–1220,10937696, 10.1093/jexbot/51.348.1211, 1:CAS:528:DC%2BD3cXlsVyjt7c%3D

    Article  PubMed  CAS  Google Scholar 

  36. Manfre A J, Lanni L M, Marcotte W R. The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development. Plant Physiol, 2006, 140: 140–149,16361514, 10.1104/pp.105.072967, 1:CAS:528:DC%2BD28XhtVCgsb8%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994, 6: 251–264, 8148648, 10.1105/tpc.6.2.251, 1:CAS:528:DyaK2cXlslWqu70%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Nakashima K, Fujita Y, Katsura K, et al. Transcriptional regulation of ABI3-and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol, 2006, 60: 51–68, 16463099, 10.1007/s11103-005-2418-5, 1:CAS:528:DC%2BD28XhtFyntrw%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShouYi Chen.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30490254) and the Major Basic Research Program of China (Grant Nos. 2004CB117200 and 2002CB111303)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wang, H., Zhang, J. et al. A seed-specific AP2-domain transcription factor from soybean plays a certain role in regulation of seed germination. SCI CHINA SER C 51, 336–345 (2008). https://doi.org/10.1007/s11427-008-0044-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0044-6

Keywords

Navigation