Skip to main content
Log in

The characteristics of action potential and nonselective cation current of cardiomyocytes in rabbit superior vena cava

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

As a special focus in initiating and maintaining atrial fibrillation (AF), cardiomyocytes in superior vena cava (SVC) have distinctive electrophysiological characters. In this study, we found that comparing with the right atrial (RA) cardiomyoctyes, the SVC cardiomyoctyes had longer APD90 at the different basic cycle lengths; the conduction block could be observed on both RA and SVC cardiomyoctyes. A few of SVC cardiomyoctyes showed slow response action potentials with automatic activity and some others showed early afterdepolarization (EAD) spontaneously. Further more, we found that there are nonselective cation current (INs) in both SVC and RA cardiomyocytes. The peak density of INs in SVC cardiomyocytes was smaller than that in RA cardiomyocytes. Removal of extracellular divalent cation and glucose could increase INs in SVC cardiomyocytes. The agonist or the antagonist of INs may increase or decrease APD. To sum up, some SVC cardiomyocytes possess the ability of spontaneous activity; the difference of transmembrane action potentials between SVC and RA cardiomyocytes is partly because of the different density of INs between them; the agonist or the antagonist of INs can increase or decrease APD leading to the enhancement or reduction of EAD genesis in SVC cardiomyocytes. INs in rabbit myocytes is fairly similar to TRPC3 current in electrophysiological property, which might play an important role in the mechanisms of AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haissaguerre M, Jais P, Shah DC, et al. Right and left atrial radiofrequency catheter therapy of paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol, 1996, 7: 1132–1144, 8985802, 10.1111/j.1540-8167.1996.tb00492.x, 1:STN:280:ByiC3sfotFw%3D

    Article  PubMed  CAS  Google Scholar 

  2. Jais P, Haissaguerre M, Shah DC, et al. A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation, 1997, 95: 572–576, 9024141, 1:STN:280:ByiC2snmtVY%3D

    Article  PubMed  CAS  Google Scholar 

  3. Haissagurre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veINs. N Engl J Med, 1998, 339: 659–666, 10.1056/NEJM199809033391003

    Article  Google Scholar 

  4. Bode F, Sachs F, Franz M R. Tarantula peptide inhibits atrial fibrillation. Nature, 2001, 409: 35–36

    Google Scholar 

  5. William J Crumb Jr, John D, et al. Description of nonselective cation current in human atrium. Circulation Res, 1995, 77: 950–956

    Article  Google Scholar 

  6. Terasawa K, Nakajima T, Iida H, et al. Nonselective cation currents regulate membrane potential of rabbit coronary arterial cell modulation by lysophosphatidylcholine. Circulation, 2002, 106: 3111–3119, 12473560, 10.1161/01.CIR.0000039345.00481.1D

    Article  PubMed  Google Scholar 

  7. Macianskiene R, Matejovic P, Sipido K, et al. Modulation of extracellular divalent cation-inhibitied nonselective conductance in cardiac cells by metabolic inhibition and by oxidants. J Mol Cell Cardiol, 2001, 33: 1372–1385, 10.1006/jmcc.2001.1401

    Article  Google Scholar 

  8. Mubagwa K, Stengl M, Flameng W. Extracellular divalent cations block a cation non-selective conductance unrelated to channels in rat cardiac muscle. J Physiol, 1997, 502: 235–247,9263906, 10.1111/j.1469-7793.1997.235bk.x, 1:CAS:528:DyaK2sXlt1Sjurg%3D

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Minke B, Cook B. TRP channel proteins and singal transduction. Physiol Rev, 2002, 82: 429–472, 11917094, 1:CAS:528:DC%2BD38XjtFOnsL8%3D

    Article  PubMed  CAS  Google Scholar 

  10. Liu T F. Early afterdepolarization in myocardium and its clinical implication. Meth Fin Exp Clin Pharmacol, 1992, 14(3): 157–163, 1:STN:280:By2A38nksFU%3D

    CAS  Google Scholar 

  11. Yeh H I, Lai Y J, Lee S H, et al. Heterogeneity of myocardial sleeve morphology and gap junction in canine superior vena cava. Circulation, 2001, 104: 3152–3157,11748116, 10.1161/hc5001.100836, 1:STN:280:DC%2BD38%2FgtVSrtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  12. Minke B, Hardie R C. Genetic dissection of Drosophila phototransduction. In: Stavenga D G, van der Hope D J N, Pugh E, eds. Molecular Mechanisms in Visual Transduction. Amsterdam: Elsever-North Holland, 2000. 449–525,10.1016/S1383-8121(00)80012-3

    Chapter  Google Scholar 

  13. Minke B, Selinger Z. The roles of trp and calcium in regulating photoreceptor function in Drosophila. Curr Opin Neurobiol, 1996, 6: 459–466, 8794093, 10.1016/S0959-4388(96)80050-X, 1:CAS:528:DyaK28Xlsleltrg%3D

    Article  PubMed  CAS  Google Scholar 

  14. Montell C. Visual transduction in Drosophila. Annu Rev Cell Dev Biol, 1999, 15: 231–268, 10611962, 10.1146/annurev.cellbio.15.1.231, 1:CAS:528:DC%2BD3cXhtVSnur0%3D

    Article  PubMed  CAS  Google Scholar 

  15. Scott K, Zuker C. Trp, Trpl and trouble in photoreceptor cells. Curr Opin Neurobiol, 1998, 8: 383–388, 9687362, 10.1016/S0959-4388(98)80065-2, 1:CAS:528:DyaK1cXktlCisr8%3D

    Article  PubMed  CAS  Google Scholar 

  16. Vannier B, Zhu X, Brown D, et al. The membrane topology of human transient receptor potential 3 as inferred from glycosulation-scanning mutagennesis and epitope immunocytochemistry. J Biol Chem, 1998, 273: 8675–8679, 9535843, 10.1074/jbc.273.15.8675, 1:CAS:528:DyaK1cXis1eltr0%3D

    Article  PubMed  CAS  Google Scholar 

  17. Dohke Y, Oh Y S, Ambudkar I S, et al. Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1. J Biol Chem, 2004, 279: 12242–12248, 14707123, 10.1074/jbc.M312456200, 1:CAS:528:DC%2BD2cXitl2hu7c%3D

    Article  PubMed  CAS  Google Scholar 

  18. Wedel B J, Vazquez G, Mckay R R, et al. A calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process. J Biol Chem, 2003, 278: 25758–25765, 12730194, 10.1074/jbc.M303890200, 1:CAS:528:DC%2BD3sXlt1Cls7w%3D

    Article  PubMed  CAS  Google Scholar 

  19. Vazquez G, Wedel B J, Aziz O, et al. The mammalian TRPC cation channels. Biochim Biophys Acta, 2004, 1742: 21–26, 15590053, 10.1016/j.bbamcr.2004.08.015, 1:CAS:528:DC%2BD2cXhtVKktrzO

    Article  PubMed  CAS  Google Scholar 

  20. Song Y D, Yang X C, Liu T F, et al. Nonselective cation current in rabbit ventricular myocytes. Methods Find Exp Clin Pharmacol, 2005, 27(7): 1–7

    Google Scholar 

  21. Faiconnier J, Lanner J T, Sultan A, et al. Insulin potentiates TRPC3-mediated cation currents in normal but not in insulin-resistant mouse cardiomyocytes. Cardiovas Res, 2007, 73: 376–385, 10.1016/j.cardiores.2006.10.018

    Article  Google Scholar 

  22. Montell G. The TRP superfamily of cation channels. Sci STKE, 2005, 22(272): re3, 10.1126/stke.2722005re3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Yang, X., Liu, X. et al. The characteristics of action potential and nonselective cation current of cardiomyocytes in rabbit superior vena cava. SCI CHINA SER C 51, 326–335 (2008). https://doi.org/10.1007/s11427-008-0043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0043-7

Keywords

Navigation