Skip to main content
Log in

Leaf surface factors of transgenic Bt cotton associated with the feeding behaviors of cotton aphids: A case study on non-target effects

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The present paper reports case study results of the risk assessment of transgenic Bt cotton on a non-target pest, cotton aphid, Aphis gossypii. Several types of techniques, i.e., electrical penetration graph (EPG), light and electron microscopy, bioassays and chemical analysis, were applied to investigate physical and chemical leaf factors of 2 transgenic Bt cotton lines (GK12 and GK19) and their parental non-Bt cotton line (Simian3) associated with searching and feeding behaviors of cotton aphids on leaves or leaf extracts of cotton plants. EPG results showed that there were some differences among behaviors of cotton aphids on 2 Bt cotton and 1 non-Bt cotton lines. Cotton aphids performed similarly to leaf surface extracts from 3 cotton lines; and leaf surface chemicals, mainly volatiles and waxes, were almost identical in the components and concentrations among the cotton lines. However, three cotton lines were quite different from each other in the densities of certain kinds of covering trichomes. Therefore, the relationships between the physical characteristics and the searching behaviors of cotton aphids on the three cotton lines were constructed as the regression equations. Glandular trichomes and covering trichomes with 5 branches influenced the cotton aphids’ searching behaviors effectively; and other trichomes with other branches affected aphids in varying ways. These results demonstrated that leaf surface physical factors of transgenic Bt cotton lines different from their parental non-Bt line could affect the penetration behaviors of non-target cotton aphids. Cotton aphids penetrate and feed more easily on two Bt cotton lines than on the non-Bt cotton line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Messeguer J. Gene flow assessment in transgenic plants. Plant Cell, Tissue and Organ Culture, 2003, 73: 201–212

    Article  CAS  Google Scholar 

  2. Andow D A, Hilbeck A. Science-based risk assessment for nontarget effects of transgenic crops. Bioscience, 2004, 54: 637–649

    Article  Google Scholar 

  3. Sisterson M S, Biggs R W, Manhardt N M, et al. Effects of transgenic Bt cotton on insecticide use and abundance of two generalist predators. Entomol Exp Appl, 2007, 124: 305–311

    Article  CAS  Google Scholar 

  4. Sharma H C, Arora R, Pampapathy G. Influence of transgenic cottons with Bacillus thuringiensis cry1Ac gene on the natural enemies of Helicoverpa armigera. Biocontrol, 2007, 52: 469–489

    Article  Google Scholar 

  5. Torres J B, Ruberson J R, Adang M J. Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators: A tritrophic analysis. Agric Forest Entomol, 2006, 8: 191–202

    Article  Google Scholar 

  6. Cattaneo M G, Yafuso C, Schmidt C, et al. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield. Proc Natl Acad Sci USA, 2006, 103: 7571–7576

    Article  PubMed  CAS  Google Scholar 

  7. Zhang G F, Wan F H, Lovei G L, et al. Transmission of Bt toxin to the predator Propylaea japonica (Coleoptera: Coccinellidae) through its aphid prey feeding on transgenic Bt cotton. Environ Entomol, 2006, 35: 143–150

    Article  CAS  Google Scholar 

  8. Naranjo S E. Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropod natural enemies. Environ Entomol, 2005, 34: 1193–1210

    Article  Google Scholar 

  9. Rosi-Marshall E J, Tank J L, Royer T V, et al. Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc Natl Acad Sci USA, 2007, 104: 16204–16208

    Article  PubMed  CAS  Google Scholar 

  10. Rose R, Dively G P. Effects of insecticide-treated and lepidopteran-active Bt Transgenic sweet corn on the abundance and diversity of arthropods. Environ Entomol, 2007, 36: 1254–1268

    Article  CAS  PubMed  Google Scholar 

  11. Floate K D, Carcamo H A, Blackshaw R E, et al. Response of ground beetle (Coleoptera: Carabidae) field populations to four years of Lepidoptera-Specific Bt corn production. Environ Entomol, 2007, 36: 1269–1274

    Article  CAS  PubMed  Google Scholar 

  12. Gathmann A, Wirooks L, Hothorn L A, et al. Impact of Bt maize pollen (MON810) on lepidopteran larvae living on accompanying weeds. Mol Ecol, 2006, 15: 2677–2685

    Article  PubMed  CAS  Google Scholar 

  13. Li F F, Ye G Y, Wu Q, et al. Arthropod abundance and diversity in Bt and non-Bt rice fields. Environ Entomol, 2007, 36: 646–654

    Article  PubMed  CAS  Google Scholar 

  14. Bai Y Y, Jiang M X, Cheng J A, et al. Effects of CrylAb toxin on Propylea japonica (Thunberg) (Coleoptera: Coccinellidae) through its prey, Nilaparvata lugens St(a)over-circlel (Homoptera: Delphacidae), feeding on Transgenic Bt rice. Environ Entomol, 2006, 35: 1130–1136

    CAS  Google Scholar 

  15. Chen M, Ye G Y, Liu Z C, et al. Field assessment of the effects of transgenic rice expressing a fused gene of cry1Ab and cry1Ac from Bacillus thuringiensis Berliner on nontarget planthopper and leafhopper populations. Environ Entomol, 2006, 35: 127–134

    Article  Google Scholar 

  16. Cui J J, Xia J Y. Effects of Bt (Bacillus thuringiensis) transgenic cotton on the dynamics of pest population and their enemies. Acta Phytophylac Sin (in Chinese), 2000, 27: 141–145

    Google Scholar 

  17. Reed G L, Andrew S J, Jennifer R, et al. Transgenic Bt potato and conventional insecticides for Colorado potato beetle management: Comparative efficacy and non-target impacts. Entomol Exp Appl, 2001, 100: 89–100

    Article  CAS  Google Scholar 

  18. Deng S D, Xu J, Zhang Q W, et al. Effect of transgenic Bt cotton on population dynamics of the non-target pests and natural enemies of pests. Acta Entomol Sin (in Chinese), 2003, 46(1): 1–5

    Google Scholar 

  19. Wan P, Huang M S, Wu K M, et al. Effects of transgenic Bt cotton on development and population dynamics of cotton aphid. Sci Agric Sin (in Chinese), 2003, 36(12): 1484–1488

    CAS  Google Scholar 

  20. Wang W G, Wu K M, Liang G M, et al. Occurrence of cotton pests in the Bt cotton fields and its control strategy. Plant Protection (in Chinese), 1999, 25(1): 3–5

    Google Scholar 

  21. 21 Wu K M, Guo YY. Influences of Bacillus thuringiensis Berliner cotton planting on population dynamics of the cotton aphid, Aphis gossypii Glover, in Northern China. Environ Entomol, 2003, 32(2): 312–318

    Article  Google Scholar 

  22. McLean D L, Kinsey M G. A technique for electrical recording aphid feeding and salivation. Nature, 1964, 202: 1358–1359

    Article  Google Scholar 

  23. Tjallingii W F. Electronic recording of penetration behaviour by aphids. Entomol Exp Appl, 1978, 24: 521–530

    Google Scholar 

  24. Tjallingii W F. Electrical recording of stylet penetration activities. In: Minks A K, Harrewijn P, eds. Aphid, Their Biology, Nature Enemies and Control, 1988. 2B,95-108

  25. Ellsbury M M, Backus E A, Ullman D L. History, development, and application of AC electrical insect feeding monitors. Entomological Society of America, Lanham, MD: Thomas Say Publications in Entomology, 1994

    Google Scholar 

  26. Walker G P, Backus E A, eds. Principles and applications of electronic monitoring and other techniques in the study of homopteran feeding behavior. Entomological Society of America, Lanham, MD: Thomas Say Publications in Entomology, 2000

  27. Martin B, Collar J L, Tjallingii W F, et al. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J General Virol, 1997, 78(10): 2701–2705

    CAS  Google Scholar 

  28. Johnson D D, Walker G P, Creamer R. Stylet penetration behavior resulting in inoculation of a semipersistently transmitted closterovirus by the whitefly Bemisia argentifolii. Entomol Exp Appl, 2002, 102(2): 115–123

    Article  Google Scholar 

  29. Backus E A, Habibij J, Yan F M, et al. Stylet penetration by adult Homalodisca coagulata on grape: Electrical penetration graph waveform characterization, tissue correlation, and possible implica-tions for transmission of Xylella fastidiosa. Ann Entomol Soc Am, 2005, 98(6): 787–813

    Article  Google Scholar 

  30. Garzo E, Soria C, Gomez-Guillamon M L, et al. Feeding behavior of Aphis gossypii on resistant accessions of different melon genotypes (Cucumis melo). Phytoparasitica, 2002, 30(2): 129–140

    Google Scholar 

  31. Constable G A, Rawson H M. Carbon production and utilization in cotton: Inferences from a carbon budget. Austral J Plant Physiol, 1980, 7: 539–553

    CAS  Google Scholar 

  32. Wullschleger S D, Oosterhuis D M. Photosynthesis, transpiration, and water-use effieiency of cotton leaves and fruit. Photosynthetica, 1991, 25: 505–515

    Google Scholar 

  33. Dimock M B, Kennedy G G. The role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Heliothis zea. Entomol Exp Appl, 1983, 33: 263–268

    Google Scholar 

  34. Yencho G C, Tingey W M. Glandular trichomes of Solanum berthaultii alter host preference of the Colorado potato beetle, Leptinotarsa decemlineata. Entomol Exp Appl, 1994, 70: 217–225

    Article  Google Scholar 

  35. Eigenbrode S D, Espelie K E. Effects of plant epicuticular lipids on insect herbivores. Ann Rev Entomol, 1995, 40: 171–194

    Article  Google Scholar 

  36. Eigenbrode S D, Castagnola T, Roux M B, et al. Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a wax bloom. Entomol Exp Appl, 1996, 81(3): 335–343

    Article  Google Scholar 

  37. Wilkens R T, Shea G O, Halbreich S, et al. Resource availability and the trichome defenses of tomato plants. Oecologia, 1996, 106(2): 181–191

    Article  Google Scholar 

  38. Chatzivasileiadis E A, Sabelis M W. Toxicity of methyl ketones from tomato trichomes to Tetranychus urticae Koch. Exp Appl Acarol, 1997, 21(6–7): 473–484

    Article  CAS  Google Scholar 

  39. Krips O E, Kleijn P W, Willems P E L, et al. Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol, 1999, 23(2): 119–131

    Article  Google Scholar 

  40. De Clercq P, Mohaghegh J, Tirry L. Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biol Contr, 2000, 18(1): 65–70

    Article  Google Scholar 

  41. Romeis J, Shanower T G, Zebitz C P W. Physical and chemical plant characteristics inhibiting the searching behaviour of Trichogramma chilonis. Entomol Exp Appl, 1998, 87: 275–284

    Article  Google Scholar 

  42. Tjallingii W F. Continuous recording of stylet penetration activities by aphids. In: Campbell R K, Eikenbary R D, eds. Aphid-Plant Genotype Interactions. Amsterdam: Elsevier, 1990, 89–99

    Google Scholar 

  43. SAS, User manual. SAS company, 1998

  44. Kamel S A, Elkassaby F Y. Relative resistance of cotton varieties to spider mites, leafhoppers, and aphids. J Econom Entomol, 1965, 58: 209–212

    Google Scholar 

  45. Aharoni A, Giri A P, Deuerlein S, et al. Terpenoid metabolism in wild-type and transgenic arabidopsis plants. Plant Cell, 2003, 15: 2866–2884

    Article  PubMed  CAS  Google Scholar 

  46. Yan F M, Bengtsson M, Anderson P, et al. Antennal response of cotton bollworm (Heliocoverpa armigera) to volatiles in transgenic Bt cotton. J Appl Entomol, 2004, 128(5): 354–357

    Article  CAS  Google Scholar 

  47. Webber I E. Anatomy of the leaf and stem of Gossypium. J Agric Res, 1938, 57: 269–286

    Google Scholar 

  48. Charles T B, McCarty J C, Jenkins J N, et al. Frequency of pigment glands and capitate and covering trichomes in nascent leaves of selected cottons. Crop Sci, 1983, 23: 369–371

    Article  Google Scholar 

  49. Bondada B R, Oosterhuis D M. Comparative epidermal ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and capsule wall. Ann Bot, 2000, 86(6): 1143–1152

    Article  Google Scholar 

  50. Ehleringer J. Leaf absorptances of Mojave and Sonoran desert plants. Oecologia, 1981, 49: 366–370

    Article  Google Scholar 

  51. Baldocchi D, Verma S B, Rosenberg N J, et al. Leaf pubescence effects on the mass and energy exchange between soybean canopies and the atmosphere. Agron J, 1983, 75: 537–542

    Article  Google Scholar 

  52. Melcher P J, Goldstein G, Meinzer F C, et al. Determinants of thermal balance in the Hawaiian giant rosette plant Argyroxiphium sandwicense. Oecologia, 1994, 98: 412–418

    Article  Google Scholar 

  53. Brewer C A, Smith W K. Patterns of leaf surface wetness for montane and subalpine plants. Plant, Cell and Environment, 1997, 20: 1–11

    Article  Google Scholar 

  54. Levin D A. The role of trichomes in plant defense. Q Rev Biol, 1973, 48: 3–15

    Article  Google Scholar 

  55. Johnson B. The influence on aphids of the glandular hairs on tomato plants. Plant Pathol, 1956, 5: 130–132

    Article  Google Scholar 

  56. Horn D J. Ecological Approach to Pest Management. London: the Guilford Press, 1988

    Google Scholar 

  57. Khan M M H, Kundu R, Alam M Z. Impact of trichome density on the infestation of Aphis gossypii Glover and incidence of virus disease in ashgourd Benincasa hispida (Thunb.) Cogn. Int J Pest Manage, 2000, 46(3): 201–204

    Article  Google Scholar 

  58. Wang S, Wang J W, Yu N, et al. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell, 2004, 16: 2323–2334

    Article  PubMed  CAS  Google Scholar 

  59. Liu X D, Zhai B P, Zhang X X, et al. Impact of transgenic cotton plants on a non-target pest, Aphis gossypii Glover. Ecol Entomol, 2005, 30: 307–315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan FengMing.

Additional information

Supported by the National Key Basic Research Program (Grant No. G2000046803), National Natural Science Foundation of China (Grant No. 39970153) and the Public and Professional Project of Environmental Protection of China (Grant No. 200709047)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, K., Deng, S., Wang, R. et al. Leaf surface factors of transgenic Bt cotton associated with the feeding behaviors of cotton aphids: A case study on non-target effects. Sci. China Ser. C-Life Sci. 51, 145–156 (2008). https://doi.org/10.1007/s11427-008-0028-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0028-6

Keywords

Navigation