Skip to main content
Log in

A new theoretical model for the origin of amino acid homochirality

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Amino acid homochirality, as a unique behavior of life, could have originated synchronously with the genetic code. In this paper, phosphoryl amino-acid-5′-nucleosides with P-N bond are postulated to be a chiral origin model in prebiotic molecular evolution. The enthalpy change in the intramolecular interaction between the nucleotide base and the amino-acid side-chain determines the stability of the particular complex, resulting in a preferred conformation associated with the chirality of amino acids. Based on the theoretical model, our experiments and calculations show that the chiral selection of the earliest amino acids for L-enantiomers seems to be a strict stereochemical/physicochemical determinism. As other amino acids developed biosynthetically from the earliest amino acids, we infer that the chirality of the later amino acids was inherited from the precursor amino acids. This idea probably goes far back in history, but it is hoped that it will be a guide for further experiments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schimmel P, Giege R, Moras D, et al. An operational RNA code for amino acids and possible relationship to genetic code. Proc Natl Acad Sci USA, 1993, 90: 8763–8768

    Article  PubMed  CAS  Google Scholar 

  2. Di Giulio M. On the origin of the genetic code. J Theor Biol, 1997, 187: 573–581

    Article  PubMed  Google Scholar 

  3. Di Giulio M. Physicochemical optimization in the genetic code origin as the number of codified amino acids increases. J Mol Evol, 1999, 49: 1–10

    Article  PubMed  Google Scholar 

  4. Wachtershauser G. The origin of life and its methodological challenge. J Theor Biol, 1997, 187: 483–494

    Article  PubMed  CAS  Google Scholar 

  5. Di Giulio M. Reflections on the origin of the genetic code: A hypothesis. J Theor Biol, 1998, 191: 191–196

    Article  PubMed  Google Scholar 

  6. Bonner W A. Parity violation and the evolution of biomolecular homochirality. Chirality, 2000, 12: 114–126

    Article  PubMed  CAS  Google Scholar 

  7. Bailey J. Chirality and the origin of life. Acta Astronautica, 2000, 46: 627–631

    Article  Google Scholar 

  8. Jorissen A, Cerf C. Asymmetric photoreactions as the origin of biomolecular homochirality: A critical review. Origins Life Evol Biosphere, 2002, 32: 129–142

    Article  CAS  Google Scholar 

  9. Aylward N N, Bofinger N. The reactions of methanimine and cyanogen with carbon monoxide in prebiotic molecular evolution on earth. Origins Life Evol Biosphere, 2001, 31: 481–500

    Article  CAS  Google Scholar 

  10. Cheng C M, Liu X H, Li Y M, et al. N-phosphoryl amino acids and biomolecular origins. Origins Life Evol Biosphere, 2004, 34: 455–464

    Article  CAS  Google Scholar 

  11. Ferris J P, Hill A R, Liu R H, et al. Synthesis of long prebiotic oligomers on mineral surfaces. Nature, 1996, 381: 59–61

    Article  PubMed  CAS  Google Scholar 

  12. Zaia DAM. A review of adsorption of amino acids an minerals: As it important for origin of life? Amino Acids, 2004, 27: 113–118

    Article  PubMed  CAS  Google Scholar 

  13. Eschenmoser A. Chemistry of potentially prebiological natural products. Origins Life, 1994, 24: 389–423

    Article  CAS  Google Scholar 

  14. Baltscheffsky H, Blomberg C, Liljenstrom H, et al. On the origin and evolution of life: An introduction. J Theor Biol, 1997, 187: 453–459

    Article  PubMed  CAS  Google Scholar 

  15. Yamagata Y, Watanabe H, Saitoh M, et al. Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature, 1991, 352: 516–519

    Article  PubMed  CAS  Google Scholar 

  16. Kolb V, Zhang S B, Xu Y, et al. Mineral induced phosphorylation of glycolate ion—a metaphor in chemical evolution. Origins Life Evol Biosphere, 1997, 27: 485–503

    Article  CAS  Google Scholar 

  17. Tsuhako M, Nakahama A, Ohashi S, et al. The reaction of cyclo-triphosphate with ethylenediamine. Bull Chem Soc Jpn, 1983, 56: 1372–1377

    Article  CAS  Google Scholar 

  18. Tsuhako M, Fujimoto M, Ohashi S, et al. Phosphorylation of nucleosides with cyclo-triphosphate. Bull Chem Soc Jpn, 1984, 57: 3274–3280

    Article  CAS  Google Scholar 

  19. Zhou W H, Ju Y, Zhao Y F, et al. Simultaneous formation of peptides and nucleotides from N-phosphothreonine. Origins Life Evolution Biosphere, 1996, 26: 547–560

    Article  CAS  Google Scholar 

  20. Arrhenius G, Sales B, Mojzsis S, et al. Entropy and charge in molecular evolution-the case of phosphate. J Theor Biol, 1997, 187: 503–522

    Article  PubMed  CAS  Google Scholar 

  21. Seligmann H, Amzallag G N. Chemical interactions between amino acid and RNA: Multiplicity of the levels of specificity explains origin of the genetic code. Naturwissenschaften, 2002, 89: 542–551

    PubMed  CAS  Google Scholar 

  22. McGuigan C, Pathirana R N, Balzarini J, et al. Intracellular delivery of bioactive AZT nucleotides by aryl phosphate derivatives of AZT. J Med Chem, 1993, 36: 1048–1052

    Article  PubMed  CAS  Google Scholar 

  23. Pin Y, Daxiong H. Molecular modeling of the binding mode of chiral metal complexes [Co(phen)2dppz]3+ with B-DNA. Sci China Ser B-Chem, 2000, 43(5): 516–523

    Article  Google Scholar 

  24. HyperChem release 6.0 for windows, molecular modeling system, Hypercube Inc. Florida USA, 2000

  25. Trifonov E N. Consensus temporal order of amino acids and evolution of the triplet code. Gene, 2000, 261: 139–151

    Article  PubMed  CAS  Google Scholar 

  26. Di Giulio M. The coevolution theory of the origin of the genetic code. Phys Life Rev, 2004, 1(2): 128–137

    Article  Google Scholar 

  27. Szathmary E. Coding coenzyme handles: A hypothesis for the origin of the genetic code. Proc Natl Acad Sci USA, 1993, 90: 9916–9920

    Article  PubMed  CAS  Google Scholar 

  28. Di Giulio M, Medugno M. The historical factor: The biosynthetic relationships between amino acids and their physicochemical properties in the origin of the genetic code. J Mol Evol, 1998, 46: 615–621

    Article  PubMed  Google Scholar 

  29. Hartman H. Speculations on the origin of the genetic code. J Mol Evol, 1995, 40: 541–544

    Article  PubMed  CAS  Google Scholar 

  30. Ikehara K, Omori Y, Arai R, Hirose H. A novel theory on the origin of the genetic code: A GNC-SNS hypothesis. J Mol Evol, 2002, 54: 530–538

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao YuFen.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 20572061) and the Science Foundation of Xiamen University (Grant No. Z03120)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, D., Chen, W., Han, B. et al. A new theoretical model for the origin of amino acid homochirality. SCI CHINA SER C 50, 580–586 (2007). https://doi.org/10.1007/s11427-007-0087-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0087-0

Keywords

Navigation