Skip to main content
Log in

Adapting rice anther culture to gene transformation and RNA interference

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Anther culture offers a rapid method of generating homozygous lines for breeding program and genetic analysis. To produce homozygous transgenic lines of rice (Oryza sativa L.) in one step, we developed an efficient protocol of anther-callus-based transformation mediated by Agrobacterium after optimizing several factors influencing efficient transformation, including callus induction and Agrobacterium density for co-cultivation. Using this protocol, we obtained 145 independent green transformants from five cultivars of japonica rice by transformation with a binary vector pCXK1301 bearing the rice gene, Xa21 for resistance to bacterial blight, of which 140 were further confirmed by PCR and Southern hybridization analysis, including haploids (32.1%), diploids (62.1%) and mixoploids (7.5%). Fifteen diploids were found to be doubled haploids, which accounted for 10.7% of the total positive lines. Finally, by including 28 from colchicine induced or spontaneous diploidization of haploids later after transformation, a total of 43 doubled haploids (30.7%) of Xa21 transgenic lines were obtained. We also generated two RNAi transgenic haploids of the rice OsMADS2 gene, a putative redundant gene of OsMADS4 based on their sequence similarity, to investigate its possible roles in rice flower development by this method. Flowers from the two OsMADS2 RNAi transgenic haploids displayed obvious homeotic alternations, in which lodicules were transformed into palea/lemma-like tissues, whereas identities of other floral organs were maintained. The phenotypic alternations were proved to result from specific transcriptional suppression of OsMADS2 gene by the introduced RNAi transgene. The results confirmed that OsMADS2 is involved in lodicule development of rice flower and functionally redundant with OsMADS4 gene. Our results demonstrated that rice anther culture could be adapted to gene transformation and RNAi analysis in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao D Y, Liu A M, Zhou Y H, Cheng Y J, Xiang Y H, Sun L H, et al. Molecular mapping of a bacterial blight resistance gene Xa-25 in rice. Acta Genetica Sinica, 2005, 32(2): 183–1838

    PubMed  CAS  Google Scholar 

  2. Mang K. Application of biotechnology in plant agriculture in China. Chin J Biotechnol, 1997, 13(3): 131–141

    PubMed  CAS  Google Scholar 

  3. Raina S K Z, Zapata F J. Enhanced anther culture efficiency of indica rice (Oryza sativa L.) through modification of culture media. Plant Breed, 1997, 116: 305–315

    Article  CAS  Google Scholar 

  4. Zeng Q, Wu Q, Feng D J, Zhou K D, Liu X, Zhu Z. Anther culture generated stem borer-resistance DH lines of Minghui 81(Oryza sativa L. subsp. indica) expressing modified crylAc gene. Chin J Biotech, 2002, 18(4): 442–446

    CAS  Google Scholar 

  5. Azhakanandam K M, Power J, Lowe K, Cocking E, Davey M. T-DNA transfer, integration, expression and inheritance in rice: effects of plant genotype and Agrobacterium super-virulence. J Plant Physiol, 2000, 157:429–440

    CAS  Google Scholar 

  6. Dong J, Teng W, Buchholz WG, Hall TC. Agrobacterium-mediated transformation of Japonica rice. Mol Breed, 1996, 2: 267–276

    Article  CAS  Google Scholar 

  7. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6(2): 271–282

    Article  PubMed  CAS  Google Scholar 

  8. Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol, 1997, 35(1–2): 205–218

    Article  PubMed  CAS  Google Scholar 

  9. Rhodora R Aldemita, Thomas K Hodges. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta, 1996, 199(4): 612–617

    Article  CAS  Google Scholar 

  10. Lin Y J, Zhang Q. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005, 23(8): 540–547

    Article  PubMed  CAS  Google Scholar 

  11. Park S H, Pinson S R, Smith R H. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol Biol, 1996, 32(6): 1135–1148

    Article  PubMed  CAS  Google Scholar 

  12. Rashid H, Toriyama Y S, Hinata K. Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep, 1996, 15: 727–730

    Article  CAS  Google Scholar 

  13. Toki, S, Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep, 1997, 15: 16–21

    CAS  Google Scholar 

  14. Upadhyaya N, Surin B, Ramm K, Gaudron J, Schünmann P, Taylor W, Waterhouse P, Wang M. Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers. Australian J Plant Physiol, 2000, 27: 201–210

    CAS  Google Scholar 

  15. Ye S Q, Chu C C, Cao S Y, Tang Z S, Wang L, Zhao S M, et al. The factors of improving rice transformation efficiency. Yi Chuan Xue Bao, 2001, 28(10): 933–938

    PubMed  CAS  Google Scholar 

  16. Yi Z L, Cao S Y, Wang L, Chu C C, Li X, He S J, et al. Improvement of transformation frequency of rice mediated by Agrobacterium. Yi Chuan Xue Bao, 2001, 28(4): 352–358

    PubMed  CAS  Google Scholar 

  17. Zhang J, Xu R J, Elliott M C, Chen D F. Agrobacterium-mediated transformation of elite indica and japonica rice cultivars. Mol Biotechnol, 1997, 8: 223–231

    PubMed  CAS  Google Scholar 

  18. Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y, Yano H. Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Reports 1998, 17(5): 323–328

    Article  CAS  Google Scholar 

  19. Jahne A, Becker D, Brettschneider R, Lörz H. Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet, 1994, 89: 525–533

    Google Scholar 

  20. Datta S K. Androgenic haploids: Factors controlling development and its application in crop improvement. Current Sci, 2005 89: 1870–1878

    CAS  Google Scholar 

  21. Baisakhi N, Dattai K, Olivai N, Ona I, Rao G J N, Mew T W, Datta S K. Rapid development of homozygous transgenic rice using anther culture harboring rice chitinase gene for enhanced sheath blight resistance. Plant Biotech, 2001, 18: 101–108

    Article  Google Scholar 

  22. Si H, Fu Y, Xiao H, Hu G, Cao J, Huang D, Sun Z. Homozygous lines of transgenic rice (Oryza sativa L.) obtained via anther culture. Chin J Rice Sci, 1999, 13: 19–24

    Google Scholar 

  23. Xiao H, Wang Y, Liu D, Wang W, Li X, Zhao X, et al. Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol, 2003, 52(5): 957–966

    Article  PubMed  CAS  Google Scholar 

  24. Chen J, Tang W H, Hong M M, Wang Z Y. OsBP-73, a rice gene, encodes a novel DNA-binding protein with a SAP-like domain and its genetic interference by double-stranded RNA inhibits rice growth. Plant Mol Biol, 2003, 52(3): 579–590

    Article  PubMed  CAS  Google Scholar 

  25. Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, et al. Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell, 2003, 15(6): 1455–1467

    Article  PubMed  CAS  Google Scholar 

  26. Prasad K, Vijayraghavan U. Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second-whorlspecific function in floral organ patterning. Genetics, 2003, 165(4): 2301–2305

    PubMed  CAS  Google Scholar 

  27. Fornara F, Parenicova L, Falasca G, Pelucchi N, Masiero S, Ciannamea S, et al. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol, 2004, 135(4): 2207–2219

    Article  PubMed  CAS  Google Scholar 

  28. Moritoh S, Miki D, Akiyama M, Kawahara M, Izawa T, Maki H, et al. RNAi-mediated silencing of OsGEN-L (OsGEN-like), a new member of the RAD2/XPG nuclease family, causes male sterility by defect of microspore development in rice. Plant Cell Physiol, 2005, 46(5): 699–715

    Article  PubMed  CAS  Google Scholar 

  29. Xu Y, McCouch S R, Zhang Q. How can we use genomics to improve cereals with rice as a reference genome? Plant Mol Biol, 2005, 59(1): 7–26

    Article  PubMed  CAS  Google Scholar 

  30. Wang W M, Zhou Y I, Li X B, Zheng X W, Zhang Q, Wang G L, et al. Breeding bacterial blight-resistant hybrid rice with the cloned bacterial blight resistance gene Xa21. Mol Breed, 2002, 8(4): 285–293

    Article  Google Scholar 

  31. Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2000, 97(9): 4985–4990

    Article  PubMed  CAS  Google Scholar 

  32. Li L C, Qu R D, Beachy R N. An improved rice transformation system using the biolistic method. Plant Cell Reports, 1993, 12: 250

    Article  Google Scholar 

  33. Zhai W X, Li X B, Tian W Z, Zhou Y, Pan X B, Cao S Y, et al. Transfer 5 Chinese rice varieties with the cloned bacterial blight resistance gene Xa21 through Agrobacterium-mediated transformation. Sci China Ser C-Life Sci (in Chinese), 2000, 30(2): 200–206

    Article  Google Scholar 

  34. He L, Zhou P, Liu X, Cao X, Cao M, Liu Y. Studies on the Autotetraploid of Triaiihena lutarioriparia L. Liou sp. nov. Chin J Genet, 1998, 25: 49–55

    Google Scholar 

  35. McCouch S R, Kochert G, Yu Z H, Wang Z Y, Khush G S, Coffman W R, et al. Molecular mapping of rice chromosomes. Theor Appl Genet, 1988, 76: 815–829

    Article  CAS  Google Scholar 

  36. Wang G L, Song W Y, Ruan D L, Sideris S, Ronald P C. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant Microbe Interact, 1996, 9(9): 850–855

    PubMed  CAS  Google Scholar 

  37. Zhao B, Wang W M, Zheng X W, Wang C L, Ma B J, Xue Q Z, Zhu L H, Zhai W X. Introduction of wide spectrum rice bacterial blight resistance gene Xa21 into two-line genic male sterile rice variety Pei’ai 64S. Chin J Biotech, 2000, 16(2): 137–141

    Google Scholar 

  38. Cheng Z, Buell C R, Wing R A, Gu M, Jiang J. Toward a cytological characterization of the rice genome. Genome Res, 2001, 11(12): 2133–2141

    Article  PubMed  CAS  Google Scholar 

  39. Jiang J, Gill B S, Wang G L, Ronald P C, Ward D C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci U S A, 1995, 92(10): 4487–4491

    Article  PubMed  CAS  Google Scholar 

  40. Chen Y. Anther and pollen culture of rice. In: Hu H, Yang H Y, eds. Haploids of Higher Plants in vitro. Beijing-Berlin-Heidelberg: China Academic Publishers and Springer-Verlag 1986. 3–25

    Google Scholar 

  41. Sun Z, Zhao C. Anther culture for rice breeding: the CNRRI program. In: Zheng K, Murashige T, eds. Anther culture for rice breeders: Proceedings of Workshop on Anther Culture, Hangzhou, China, 1992. 112–116

    Google Scholar 

  42. Afolabi A S, Worland B, Snape J W, Vain P. A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor Appl Genet, 2004, 109(4): 815–826

    Article  PubMed  CAS  Google Scholar 

  43. Li X B, Yi C D, Zhai W X, Yang Z Y, Zhu L H. A genetically modified japonica restorer line, C418-Xa21, and its hybrid rice with bacterial blight resistance. Chin J Biotech, 2001 Jul, 17(4): 380–384

    CAS  Google Scholar 

  44. Kamisugi Y, Nakayama, Nakajima R, Ohtsubo H, Ohtsubo E, Fukui K. Physical mapping of the 5S ribosomal RNA genes on rice chromosome 11. Mol Gen Genet, 1994, 245(2): 133–138

    Article  PubMed  CAS  Google Scholar 

  45. Kang H G, Jeon J S, Lee S, An G. Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol, 1998, 38(6): 1021–1029

    Article  PubMed  CAS  Google Scholar 

  46. Al-Forkan M, Power J B, Anthony P, Lowe K C, Davey M R. Agrobacterium-mediated transformation of Bangladeshi Indica rices. Cell Mol Biol Lett, 2004, 9(2): 287–300

    PubMed  CAS  Google Scholar 

  47. Yoshida S, Watanabe K, Fujino M. Non-random gametoclonal variation in rice regeneranis from callus subcultured for a prolonged period under high osmotic stress. Euphytica, 1998, 104: 87–94

    Article  Google Scholar 

  48. Cheng M, Lower B A, Michael S T, Ye X, Armstrong C L. Invited review: Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In vitro Cellular and Developmental Biology—Plant, 2004, 40(1): 31–45

    Article  Google Scholar 

  49. Lee S, Jeon J S, An K, Moon Y H, Lee S, Chung Y Y, An G. Alteration of floral organ identity in rice through ectopic expression of OsMADS16, Planta, 2003, 217(6): 904–911

    Article  PubMed  CAS  Google Scholar 

  50. Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, et al. SUPERWOMANI and DROOPING LEAF genes control floral organ identity in rice. Development, 2003, 130(4): 705–718

    Article  PubMed  CAS  Google Scholar 

  51. Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S. Efficient gene targeting by homologous recombination in rice. Nat Biotechnol, 2002, 20(10): 1030–1034

    Article  PubMed  CAS  Google Scholar 

  52. Cotsaftis O, Guiderdoni E. Enhancing gene targeting efficiency in higher plants: rice is on the move. Transgenic Res, 2005, 14(1): 1–14

    Article  PubMed  CAS  Google Scholar 

  53. Schaefer D G. Gene targeting in Physcomitrella patens. Curr Opin Plant Biol, 2001. 4(2): 143–150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Lihuang.

Additional information

The authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Xiao, H., Zhang, W. et al. Adapting rice anther culture to gene transformation and RNA interference. SCI CHINA SER C 49, 414–428 (2006). https://doi.org/10.1007/s11427-006-2013-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-006-2013-2

Keywords

Navigation