Skip to main content
Log in

Highly selective and eco-friendly dihydroisoquinoline synthesis via Cu/Co synergistic catalysis in Cu NPs@MOFs catalyst under mild conditions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

3,4-Dihydroisoquinoline (DHIQ) is an important precursor used in the production of drugs for treating cancer, HIV, Alzheimer’s disease, etc. Major studies on DHIQ synthesis show low catalytic selectivity due to the susceptible over-oxidation feedstock of 1,2,3,4-tetrahydroisoquinoline (THIQ), which often requires alkali co-catalysts. Therefore, it is desirable yet challenging to explore a highly selective and efficient oxydehydrogenation capacity for DHIQ synthesis under eco-friendly reaction conditions. Herein, a novel framework 1 was synthesized, exhibiting 1D channels with the size of 4.6 Å × 9.6 Å and high solvent/pH/thermal stability. A stable framework allows it to encapsulate Cu nanoparticles (NPs) to form Cu NPs@1-x (x = 1, 2, 3, and 4) with varying loading amounts of Cu NPs at 2.0 wt%, 3.0 wt%, 4.0 wt%, and 6.0 wt%, respectively. Cu NPs@1–3 could selectively catalyze the reaction from THIQ to DHIQ with a high selectivity of 98% and a recorded turnover frequency (TOF) of 22.1 h−1 under eco-friendly mild conditions. The corresponding catalytic activity can maintain at least five recyclings and can be further applied to gram-scale experiments. Additionally, the efficient preparation of DHIQ catalyzed by Cu NPs@1–3 could be realized even under air conditions. Importantly, the anticancer molecule precursor synthesis of 6,7-dimethoxy-3,4-dihydroisoquinoline was also selectively catalyzed by Cu NPs@1–3. Mechanism investigations revealed that high catalytic performance can be attributed to the stable framework and the synergistic catalytic effect of the loaded Cu NPs and Co metal centers. More importantly, this work represents the first example of MOF catalysts for selectively thermo-catalytic DHIQ synthesis and demonstrates a simple approach to obtain efficient catalysts for selective oxydehydrogenation in the production of unsaturated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Xu D, Liu R, Li J, Zhao H, Ma J, Dong Z. Appl Catal B-Environ, 2021, 299: 120681

    Article  CAS  Google Scholar 

  2. Wu JCS, Lin SJ. Chem Eng J, 2008, 140: 391–397

    Article  CAS  Google Scholar 

  3. Taketoshi A, Koizumi T, Kanbara T. Tetrahedron Lett, 2010, 51: 6457–6459

    Article  CAS  Google Scholar 

  4. Zhao B, Huang Y, Liu D, Yu Y, Zhang B. Sci China Chem, 2020, 63: 28–34

    Article  CAS  Google Scholar 

  5. Alvarez FN, Carlson LM, Lindner I, Lee KP. Chemotherapy, 2009, 55: 175–182

    Article  CAS  PubMed  Google Scholar 

  6. Duan XH, Jiang JQ. Chin Chem Lett, 2008, 19: 308–310

    Article  CAS  Google Scholar 

  7. Novák Z, Chlebek J, Opletal L, Jiroš P, Macáková K, Kuneš J, Cahlíková L. Nat Prod Commun, 2012, 7: 859–860

    PubMed  Google Scholar 

  8. Takale BS, Feng X, Lu Y, Bao M, Jin T, Minato T, Yamamoto Y. J Am Chem Soc, 2016, 138: 10356–10364

    Article  CAS  PubMed  Google Scholar 

  9. Deng X, Qin Y, Hao M, Li Z. Inorg Chem, 2019, 58: 16574–16580

    Article  CAS  PubMed  Google Scholar 

  10. Angelici RJ. J Organomet Chem, 2008, 693: 847–856

    Article  CAS  Google Scholar 

  11. Wendlandt AE, Stahl SS. J Am Chem Soc, 2014, 136: 11910–11913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gopalaiah K, Saini A. Catal Lett, 2016, 146: 1648–1654

    Article  CAS  Google Scholar 

  13. Kodama S, Yoshida J, Nomoto A, Ueta Y, Yano S, Ueshima M, Ogawa A. Tetrahedron Lett, 2010, 51: 2450–2452

    Article  CAS  Google Scholar 

  14. Huang B, Tian H, Lin S, Xie M, Yu X, Xu Q. Tetrahedron Lett, 2013, 54: 2861–2864

    Article  CAS  Google Scholar 

  15. Liu T, Wu K, Wang L, Yu Z. Adv Synth Catal, 2019, 361: 3958–3964

    Article  CAS  Google Scholar 

  16. Yang Y, Louisia S, Yu S, Jin J, Roh I, Chen C, Fonseca Guzman MV, Feijóo J, Chen PC, Wang H, Pollock CJ, Huang X, Shao YT, Wang C, Muller DA, Abruña HD, Yang P. Nature, 2023, 614: 262–269

    Article  CAS  PubMed  Google Scholar 

  17. Kong X, Wang C, Zheng H, Geng Z, Bao J, Zeng J. Sci China Chem, 2021, 64: 1096–1102

    Article  CAS  Google Scholar 

  18. Hong Q, Yang H, Fang Y, Li W, Zhu C, Wang Z, Liang S, Cao X, Zhou Z, Shen Y, Liu S, Zhang Y. Nat Commun, 2023, 14: 2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu Z, Zhang Q, Huang Z, Chen H, Zhang J, Chen W, Meng G, Wang D. Sci China Chem, 2023, 66: 1241–1260

    Article  CAS  Google Scholar 

  20. Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Chem Rev, 2016, 116: 3086–3240

    Article  CAS  PubMed  Google Scholar 

  21. Cheng LJ, Mankad NP. Acc Chem Res, 2021, 54: 2261–2274

    Article  CAS  PubMed  Google Scholar 

  22. Du H, Ma X, Jiang M, Zhang ZC. Chin Chem Lett, 2022, 33: 912–915

    Article  CAS  Google Scholar 

  23. Wang K, Liu D, Liu L, Liu J, Hu XF, Li P, Li M, Vasenko AS, Xiao C, Ding S. eScience, 2022, 2: 518–528

    Article  CAS  Google Scholar 

  24. Tang T, Wang Z, Guan J. Exploration, 2023, 3: 20230011

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dai Y, Yan X, Tang Y, Liu X, Xiao L, Fan J. ChemCatChem, 2012, 4: 1603–1610

    Article  CAS  Google Scholar 

  26. Guo H, Poths P, Sautet P, Alexandrova AN. ACS Catal, 2021, 12: 818–827

    Article  Google Scholar 

  27. Nauert SL, Schax F, Limberg C, Notestein JM. J Catal, 2016, 341: 180–190

    Article  CAS  Google Scholar 

  28. Valtera S, Jašík J, Vaidulych M, Olszówka JE, Zlámalová M, Tarábková H, Kavan L, Vajda Š. J Chem Phys, 2022, 156: 114302

    Article  CAS  PubMed  Google Scholar 

  29. He HH, Yuan JP, Cai PY, Wang KY, Feng L, Kirchon A, Li J, Zhang LL, Zhou HC, Fang Y. J Am Chem Soc, 2023, 145: 17164–17175

    Article  CAS  PubMed  Google Scholar 

  30. Zhang L, Liu J, Zhang F, Zhang XM. J Catal, 2017, 354: 78–83

    Article  CAS  Google Scholar 

  31. Zhao D, Zhang G, Yan L, Kong L, Zheng H, Mi J, Li Z. Catal Sci Technol, 2020, 10: 2615–2626

    Article  CAS  Google Scholar 

  32. Xu ZM, Hu Z, Huang Y, Bao SJ, Niu Z, Lang JP, Al-Enizi AM, Nafady A, Ma S. J Am Chem Soc, 2023, 145: 14994–15000

    Article  CAS  PubMed  Google Scholar 

  33. Lu XF, Xia BY, Zang S-, Lou XWD. Angew Chem Int Ed, 2020, 59: 4634–4650

    Article  CAS  Google Scholar 

  34. Lian X, Erazo-Oliveras A, Pellois JP, Zhou HC. Nat Commun, 2017, 8: 2075

    Article  PubMed  PubMed Central  Google Scholar 

  35. He H, Sun F, Aguila B, Perman JA, Ma S, Zhu G. J Mater Chem A, 2016, 4: 15240–15246

    Article  CAS  Google Scholar 

  36. Guo S, Kong L, Wang P, Yao S, Lu T, Zhang Z. Angew Chem Int Ed, 2022, 61: e202206193

    Article  CAS  Google Scholar 

  37. Li J, Huang H, Xue W, Sun K, Song X, Wu C, Nie L, Li Y, Liu C, Pan Y, Jiang HL, Mei D, Zhong C. Nat Catal, 2021, 4: 719–729

    Article  CAS  Google Scholar 

  38. Yan T, Wang P, Sun W. Small, 2022, 19: 2206070

    Article  Google Scholar 

  39. Yu F, Jing X, Wang Y, Sun M, Duan C. Angew Chem Int Ed, 2021, 60: 24849–24853

    Article  CAS  Google Scholar 

  40. He C, Zou YH, Si DH, Chen ZA, Liu TF, Cao R, Huang YB. Nat Commun, 2023, 14: 3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gong W, Chen X, Fahy KM, Dong J, Liu Y, Farha OK, Cui Y. J Am Chem Soc, 2023, 145: 13869–13878

    Article  CAS  PubMed  Google Scholar 

  42. Ai X, Xie H, Chen S, Zhang G, Xu B, Zhou G. Int J Hydrogen Energy, 2022, 47: 14884–14895

    Article  CAS  Google Scholar 

  43. Xiao Q, Xu X, Fan C, Qi Z, Jiang S, Deng Q, Tong Q, Zhang Q. J Electroanal Chem, 2022, 911: 116214

    Article  CAS  Google Scholar 

  44. Bezerra LS, Rosa PP, Fortunato GV, Pizzuti L, Casagrande GA, Maia G. J Mater Chem A, 2018, 6: 19590–19603

    Article  CAS  Google Scholar 

  45. Gao T, Jin Z, Liao M, Xiao J, Yuan H, Xiao D. J Mater Chem A, 2015, 3: 17763–17770

    Article  CAS  Google Scholar 

  46. Yu Z, Bai Y, Zhang S, Liu Y, Zhang N, Wang G, Wei J, Wu Q, Sun K. ACS Appl Mater Interfaces, 2018, 10: 6245–6252

    Article  CAS  PubMed  Google Scholar 

  47. Hu P, Zhao Z, Sun X, Muhammad Y, Li J, Chen S, Pang C, Liao T, Zhao Z. Chem Eng J, 2019, 356: 329–340

    Article  CAS  Google Scholar 

  48. Hu S, Xie C, Xu Y, Chen X, Gao M, Wang H, Yang W, Xu Z, Guo G, Jiang H. Angew Chem Int Ed, 2023, 62: e202311625

    Article  CAS  Google Scholar 

  49. Sun Z, Sun K, Gao M, Metin Ö, Jiang H. Angew Chem Int Ed, 2022, 61: e202206108

    Article  CAS  Google Scholar 

  50. Gutterød ES, Lazzarini A, Fjermestad T, Kaur G, Manzoli M, Bordiga S, Svelle S, Lillerud KP, Skúlason E, Øien-Ødegaard S, Nova A, Olsbye U. J Am Chem Soc, 2020, 142: 999–1009

    Article  PubMed  Google Scholar 

  51. Gutterød ES, Pulumati SH, Kaur G, Lazzarini A, Solemsli BG, Gunnæs AE, Ahoba-Sam C, Kalyva ME, Sannes JA, Svelle S, Skúlason E, Nova A, Olsbye U. J Am Chem Soc, 2020, 142: 17105–17118

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang C, Yu Z, Yang Y, Sun Z, Wang Y, Shi C, Liu YY, Wang A, Leus K, Van Der Voort P. Molecules, 2021, 26: 5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo GC, Ma L, Li XD, Guo S, Lu TB, Zhang ZM. J Mater Chem A, 2023, 11: 14052–14057

    Article  CAS  Google Scholar 

  54. Fan R, Chen C, Han M, Gong W, Zhang H, Zhang Y, Zhao H, Wang G. Small, 2018, 14: 1801953

    Article  Google Scholar 

  55. Zhang J, Chen S, Chen F, Xu W, Deng G, Gong H. Adv Synth Catal, 2017, 359: 2358–2363

    Article  CAS  Google Scholar 

  56. Huang C, Huang Y, Liu C, Yu Y, Zhang B. Angew Chem Int Ed, 2019, 58: 12014–12017

    Article  CAS  Google Scholar 

  57. Yoo H, Yang Y, Kim SL, Son SH, Jang YH, Shin J, Kim N. Chem-An Asian J, 2021, 16: 3469–3475

    Article  CAS  Google Scholar 

  58. Li X, Zhang B, Tang L, Goh TW, Qi S, Volkov A, Pei Y, Qi Z, Tsung C, Stanley L, Huang W. Angew Chem Int Ed, 2017, 56: 16371–16375

    Article  CAS  Google Scholar 

  59. Yin X, Lv B, Kang Y, Xu X, Lei X, Li L, Wang H, Xi H, Yang J, Yang Z. Catal Lett, 2023, 153: 570–583

    Article  CAS  Google Scholar 

  60. Cui X, Li Y, Bachmann S, Scalone M, Surkus AE, Junge K, Topf C, Beller M. J Am Chem Soc, 2015, 137: 10652–10658

    Article  CAS  PubMed  Google Scholar 

  61. Liao C, Li X, Yao K, Yuan Z, Chi Q, Zhang Z. ACS Sustain Chem Eng, 2019, 7: 13646–13654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92161202, 22271159, 22121005, 21971125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hang Xu or Bin Zhao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2024_1997_MOESM1_ESM.pdf

Highly selective and eco-friendly dihydroisoquinoline synthesis via Cu/Co synergistic catalysis in Cu NPs@MOFs catalyst under mild conditions

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, PF., Liang, ZL., Jiao, YE. et al. Highly selective and eco-friendly dihydroisoquinoline synthesis via Cu/Co synergistic catalysis in Cu NPs@MOFs catalyst under mild conditions. Sci. China Chem. 67, 1561–1568 (2024). https://doi.org/10.1007/s11426-024-1997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-024-1997-2

Navigation