Skip to main content
Log in

Stereoselective synthesis of substituted 1,3-dienes from propargylic esters: electrophilic-metal or redox catalysis?

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

1,3-Diene architectures are not only widely present in natural products, pharmaceuticals, and functional organic materials but also serve as versatile building blocks to furnish important functionalized molecules in synthetic chemistry due to conjugated repeating C=C units. Accordingly, various strategies to access substituted 1,3-dienes in a stereoselective manner have been developed. However, chemo-, regio- and stereoselective synthesis of highly substituted 1,3-dienes still remains elusive and challenging. Readily available propargylic esters have emerged as an appealing class of synthetic intermediates for accessing functionalized 1,3-dienes, especially challenging tri- or tetrasubstituted variants, via transition-metal catalysis, including electrophilic metal and redox neutral catalysis. This review, for the first time, systematically highlights recent advances in transition-metal catalyzed synthesis of substituted 1,3-dienes from propargylic esters, discusses the mechanisms and synthetic utilities, and gives the remaining challenges and potential opportunities in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harned AM, Volp KA. Nat Prod Rep, 2011, 28: 1790–1810

    Article  CAS  PubMed  Google Scholar 

  2. Su Y, Li B, Xu H, Lu C, Wang S, Chen B, Wang Z, Wang W, Otake K, Kitagawa S, Huang L, Gu C. J Am Chem Soc, 2022, 144: 18218–18222

    Article  CAS  PubMed  Google Scholar 

  3. Mandal AK, Schneekloth, JS, Crews CM. Org Lett, 2005, 7: 3645–3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Zhang X, Kong Y, Yang WL, Xu Z, Cheng J, Shao X, Xu X, Li Z. J Agric Food Chem, 2023, 71: 11332–11340

    Article  CAS  PubMed  Google Scholar 

  5. Harmon NM, Poe MM, Huang X, Singh R, Foust BJ, Hsiao CHC, Wiemer DF, Wiemer AJ. ACS Med Chem Lett, 2022, 13: 164–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tan X, Gao S, Yang C, Lang Q, Ding X, Chen GQ, Zhang X. Sci China Chem, 2023, 66: 2847–2851

    Article  CAS  Google Scholar 

  7. Hamel C, Prusov E, Gertsch J, Schweizer W, Altmann K. Angew Chem Int Ed, 2008, 47: 10081–10085

    Article  CAS  Google Scholar 

  8. Fürstner A, Nevado C, Waser M, Tremblay M, Chevrier C, Teplý F, Aïssa C, Moulin E, Müller O. J Am Chem Soc, 2007, 129: 9150–9161

    Article  PubMed  Google Scholar 

  9. Li R, Li J, Chen X, Liu J, Wang X, Tang S. Adv Synth Catal, 2022, 364: 4260–4265

    Article  CAS  Google Scholar 

  10. Houk KN. Acc Chem Res, 1975, 8: 361–369

    Article  CAS  Google Scholar 

  11. Corey EJ. Angew Chem Int Ed, 2002, 41: 1650–1667

    Article  CAS  Google Scholar 

  12. Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew Chem Int Ed, 2002, 41: 1668–1698

    Article  CAS  Google Scholar 

  13. Eschenbrenner-Lux V, Kumar K, Waldmann H. Angew Chem Int Ed, 2014, 53: 11146–11157

    Article  CAS  Google Scholar 

  14. Liu L, Kim H, Xie Y, Farès C, Kaib PSJ, Goddard R, List B. J Am Chem Soc, 2017, 139: 13656–13659

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Q, Li Y, Zhang Q, Cheng J, Li X. Angew Chem Int Ed, 2021, 60: 17608–17614

    Article  CAS  Google Scholar 

  16. Kennedy CR, Zhong H, Joannou MV, Chirik PJ. Adv Synth Catal, 2020, 362: 404–416

    Article  CAS  PubMed  Google Scholar 

  17. Armengol-Relats H, Mato M, Echavarren AM. Angew Chem Int Ed, 2021, 60: 1916–1922

    Article  CAS  Google Scholar 

  18. Tan W, Zhang JY, Gao CH, Shi F. Sci China Chem, 2023, 66: 966–992

    Article  CAS  Google Scholar 

  19. Zhou YY, Uyeda C. Science, 2019, 363: 857–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Corti V, Barløse CL, Østergaard NL, Kristensen A, Jessen NI, Jørgensen KA. J Am Chem Soc, 2023, 145: 1448–1459

    Article  CAS  PubMed  Google Scholar 

  21. Werth J, Uyeda C. Angew Chem Int Ed, 2018, 57: 13902–13906

    Article  CAS  Google Scholar 

  22. Sun Z, Dai M, Ding C, Chen S, Chen LA. J Am Chem Soc, 2023, 145: 18115–18125

    Article  CAS  PubMed  Google Scholar 

  23. Cornil J, Guérinot A, Cossy J. Org Biomol Chem, 2015, 13: 4129–4142

    Article  CAS  PubMed  Google Scholar 

  24. Sargent BT, Alexanian EJ. J Am Chem Soc, 2017, 139: 12438–12440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szudkowska-Frątczak J, Marciniec B, Hreczycho G, Kubicki M, Pawluć P. Org Lett, 2015, 17: 2366–2369

    Article  PubMed  Google Scholar 

  26. Luo SXL, Cannon JS, Taylor BLH, Engle KM, Houk KN, Grubbs RH. J Am Chem Soc, 2016, 138: 14039–14046

    Article  CAS  PubMed  Google Scholar 

  27. Sit MK, Cao HH, Wu YD, Yip TC, Bendel LE, Zhang W, Dai WM. Org Lett, 2023, 25: 1633–1637

    Article  CAS  PubMed  Google Scholar 

  28. Funk TW, Efskind J, Grubbs RH. Org Lett, 2005, 7: 187–190

    Article  CAS  PubMed  Google Scholar 

  29. Li G, Huo X, Jiang X, Zhang W. Chem Soc Rev, 2020, 49: 2060–2118

    Article  CAS  PubMed  Google Scholar 

  30. Perry GJP, Jia T, Procter DJ. ACS Catal, 2020, 10: 1485–1499

    Article  CAS  Google Scholar 

  31. Yang H, Yang ZQ, Zhang SZ, Zhang WW, Gu Q, You SL. Sci China Chem, 2023, 66: 2842–2846

    Article  CAS  Google Scholar 

  32. Xiong Y, Zhang G. J Am Chem Soc, 2018, 140: 2735–2738

    Article  CAS  PubMed  Google Scholar 

  33. Sardini SR, Brown MK. J Am Chem Soc, 2017, 139: 9823–9826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo W, Wang Q, Zhu J. Angew Chem Int Ed, 2021, 60: 4085–4089

    Article  CAS  Google Scholar 

  35. Hoffmann HMR. Angew Chem Int Ed, 1969, 8: 556–577

    Article  CAS  Google Scholar 

  36. François B, Eberlin L, Berrée F, Whiting A, Carboni B. Eur J Org Chem, 2020, 2020: 3282–3293

    Article  Google Scholar 

  37. Ghosh T, Gingrich HL, Kam CK, Mobraaten EC, Jones Jr. M. J Am Chem Soc, 1991, 113: 1313–1318

    Article  CAS  Google Scholar 

  38. Johannsen M, Anker Jørgensen K. Tetrahedron, 1996, 52: 7321–7328

    Article  CAS  Google Scholar 

  39. Kim HJ, Ruszczycky MW, Choi SH, Liu YN, Liu HW. Nature, 2011, 473: 109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kelly WL. Org Biomol Chem, 2008, 6: 4483–4493

    Article  CAS  PubMed  Google Scholar 

  41. Stocking EM, Williams RM. Angew Chem Int Ed, 2003, 42: 3078–3115

    Article  CAS  Google Scholar 

  42. Wang H, Zou Y, Li M, Tang Z, Wang J, Tian Z, Strassner N, Yang Q, Zheng Q, Guo Y, Liu W, Pan L, Houk KN. Nat Chem, 2023, 15: 177–184

    Article  CAS  PubMed  Google Scholar 

  43. Briou B, Améduri B, Boutevin B. Chem Soc Rev, 2021, 50: 11055–11097

    Article  CAS  PubMed  Google Scholar 

  44. Raynaud J, Wu JY, Ritter T. Angew Chem Int Ed, 2012, 51: 11805–11808

    Article  CAS  Google Scholar 

  45. Han Y, Liu Z, Zhao Z, Liu B, Cui D. Organometallics, 2022, 41: 1412–1418

    Article  CAS  Google Scholar 

  46. Leicht H, Göttker-Schnetmann I, Mecking S. J Am Chem Soc, 2017, 139: 6823–6826

    Article  CAS  PubMed  Google Scholar 

  47. Ruan XY, Zhang T, Li WA, Yin YZ, Han ZY, Gong LZ. Sci China Chem, 2022, 65: 863–869

    Article  CAS  Google Scholar 

  48. Liao L, Guo R, Zhao X. Angew Chem Int Ed, 2017, 56: 3201–3205

    Article  CAS  Google Scholar 

  49. Peng S, Yang J, Liu G, Huang Z. Sci China Chem, 2019, 62: 336–340

    Article  CAS  Google Scholar 

  50. Yang Y, Li HX, Zhu TY, Zhang ZY, Yu ZX. J Am Chem Soc, 2023, 145: 17087–17095

    Article  CAS  PubMed  Google Scholar 

  51. Tortajada A, Ninokata R, Martin R. J Am Chem Soc, 2018, 140: 2050–2053

    Article  CAS  PubMed  Google Scholar 

  52. Liu S, Zhang D, Xiao M, Pu C, Zhang X, Yang X, Zhang T, Bai R. Org Chem Front, 2023, 10: 181–188

    Article  CAS  Google Scholar 

  53. Korkis SE, Burns DJ, Lam HW. J Am Chem Soc, 2016, 138: 12252–12257

    Article  CAS  PubMed  Google Scholar 

  54. Yang HY, Lin LQ, Li NQ, Ren ZH, Guan ZH. Sci China Chem, 2023, 66: 1474–1481

    Article  CAS  Google Scholar 

  55. Hubert P, Seibel E, Beemelmanns C, Campagne J, de Figueiredo RM. Adv Synth Catal, 2020, 362: 5532–5575

    Article  CAS  Google Scholar 

  56. Negishi E, Huang Z, Wang G, Mohan S, Wang C, Hattori H. Acc Chem Res, 2008, 41: 1474–1485

    Article  CAS  PubMed  Google Scholar 

  57. Kenar JA, Havrilla CM, Porter NA, Guyton JR, Brown SA, Klemp KF, Selinger E. Chem Res Toxicol, 1996, 9: 737–744

    Article  CAS  PubMed  Google Scholar 

  58. Xu G, Xu J, Xu H, Cui X, Shu X. Chin J Org Chem, 2023, 43: 1899–1933

    Article  CAS  Google Scholar 

  59. Soengas RG, Rodríguez-Solla H. Molecules, 2021, 26: 249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Paolis M, Chataigner I, Maddaluno J. Top Curr Chem, 2012, 327: 87–146

    Article  PubMed  Google Scholar 

  61. Pyziak J, Walkowiak J, Marciniec B. Chem Eur J, 2017, 23: 3502–3541

    Article  CAS  PubMed  Google Scholar 

  62. Diver ST, Giessert AJ. Chem Rev, 2004, 104: 1317–1382

    Article  CAS  PubMed  Google Scholar 

  63. de Haro T, Gómez-Bengoa E, Cribiú R, Huang X, Nevado C. Chem Eur J, 2012, 18: 6811–6824

    Article  CAS  PubMed  Google Scholar 

  64. Huang X, de Haro T, Nevado C. Chem Eur J, 2009, 15: 5904–5908

    Article  CAS  PubMed  Google Scholar 

  65. Green NJ, Willis AC, Sherburn MS. Angew Chem Int Ed, 2016, 55: 9244–9248

    Article  CAS  Google Scholar 

  66. Rivera-Chao E, Fañanás-Mastral M. Angew Chem Int Ed, 2018, 57: 9945–9949

    Article  CAS  Google Scholar 

  67. Rivera-Chao E, Fañanás-Mastral M. Angew Chem Int Ed, 2021, 60: 16922–16927

    Article  CAS  Google Scholar 

  68. Cai H, Tu YQ, Lu K, Chen QL, Zhang FM, Zhang XM, Pan YJ, Yan ZB. Sci China Chem, 2023, 66: 2791–2796

    Article  CAS  Google Scholar 

  69. Dutta S, Shandilya S, Yang S, Gogoi MP, Gandon V, Sahoo AK. Nat Commun, 2022, 13: 1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guo K, Kleij AW. Angew Chem Int Ed, 2021, 60: 4901–4906

    Article  CAS  Google Scholar 

  71. Baek Y, Cheong K, Ko GH, Han GU, Han SH, Kim D, Lee K, Lee PH. J Am Chem Soc, 2020, 142: 9890–9895

    Article  CAS  PubMed  Google Scholar 

  72. Ping Y, Zhang S, Chang T, Wang J. J Org Chem, 2019, 84: 8275–8283

    Article  CAS  PubMed  Google Scholar 

  73. Yu H, Yu B, Zhang H, Huang H. Org Lett, 2021, 23: 3891–3896

    Article  CAS  PubMed  Google Scholar 

  74. Huang F, Huang Z, Liu G, Huang Z. Org Lett, 2022, 24: 5486–5490

    Article  CAS  PubMed  Google Scholar 

  75. Chen Y, Zhu K, Huang Q, Lu Y. Chem Sci, 2021, 12: 13564–13571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sasaki Y, Horita Y, Zhong C, Sawamura M, Ito H. Angew Chem Int Ed, 2011, 50: 2778–2782

    Article  CAS  Google Scholar 

  77. Zheng C, Wang D, Stahl SS. J Am Chem Soc, 2012, 134: 16496–16499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Stille JK, Groh BL. J Am Chem Soc, 1987, 109: 813–817

    Article  CAS  Google Scholar 

  79. Karabelas K, Hallberg A. J Org Chem, 1988, 53: 4909–4914

    Article  CAS  Google Scholar 

  80. Shen C, Zhu Y, Shen W, Jin S, Zhong G, Luo S, Xu L, Zhong L, Zhang J. Org Chem Front, 2022, 9: 2109–2115

    Article  CAS  Google Scholar 

  81. Jin L, Zhang P, Li Y, Yu X, Shi BF. J Am Chem Soc, 2021, 143: 12335–12344

    Article  CAS  PubMed  Google Scholar 

  82. Hu T, Li M, Zhao Q, Feng C, Lin G. Angew Chem Int Ed, 2018, 57: 5871–5875

    Article  CAS  Google Scholar 

  83. Olivares AM, Weix DJ. J Am Chem Soc, 2018, 140: 2446–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu Y, Wang L, Deng L. J Am Chem Soc, 2016, 138: 112–115

    Article  CAS  PubMed  Google Scholar 

  85. Liu J, Yang J, Baumann W, Jackstell R, Beller M. Angew Chem Int Ed, 2019, 58: 10683–10687

    Article  CAS  Google Scholar 

  86. Li Y, Wu J, Li H, Sun Q, Xiong L, Yin G. Org Chem Front, 2021, 8: 628–634

    Article  CAS  Google Scholar 

  87. Zhou P, Jiang H, Huang L, Li X. Chem Commun, 2011, 47: 1003–1005

    Article  CAS  Google Scholar 

  88. Kakiuchi F, Uetsuhara T, Tanaka Y, Chatani N, Murai S. J Mol Catal A-Chem, 2002, 182–183: 511–514

    Article  Google Scholar 

  89. Neisius N, Plietker B. Angew Chem Int Ed, 2009, 48: 5752–5755

    Article  CAS  Google Scholar 

  90. Hou CJ, Schuppe AW, Knippel JL, Ni AZ, Buchwald SL. Org Lett, 2021, 23: 8816–8821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhu C, Yang B, Jiang T, Bäckvall J. Angew Chem Int Ed, 2015, 54: 9066–9069

    Article  CAS  Google Scholar 

  92. Hampton CS, Harmata M. J Org Chem, 2016, 81: 4807–4822

    Article  CAS  PubMed  Google Scholar 

  93. Parisotto S, Palagi L, Prandi C, Deagostino A. Chem Eur J, 2018, 24: 5484–5488

    Article  CAS  PubMed  Google Scholar 

  94. Brown RW, Zamani F, Gardiner MG, Yu H, Pyne SG, Hyland CJT. Chem Sci, 2019, 10: 9051–9056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yoshida M, Gotou T, Ihara M. Chem Commun, 2004, 1124

  96. O’Broin CQ, Guiry PJ. J Org Chem, 2020, 85: 10321–10333

    Article  PubMed  Google Scholar 

  97. Niu B, Wei Y, Shi M. Org Chem Front, 2021, 8: 3475–3501

    Article  CAS  Google Scholar 

  98. Dai M, Sun Z, Chen L. Angew Chem Int Ed, 2022, 61: e202203835

    Article  CAS  Google Scholar 

  99. Ljungdahl N, Kann N. Angew Chem Int Ed, 2009, 48: 642–644

    Article  CAS  Google Scholar 

  100. Zhang DY, Hu XP. Tetrahedron Lett, 2015, 56: 283–295

    Article  CAS  Google Scholar 

  101. Zhu F, Li CX, Wu ZL, Cai T, Wen W, Guo QX. Nat Commun, 2022, 13: 7290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hu Q, He Z, Peng L, Guo C. Nat Synth, 2022, 1: 322–331

    Article  Google Scholar 

  103. Ye J, Ma S. Org Chem Front, 2014, 1: 1210–1224

    Article  CAS  Google Scholar 

  104. Neff RK, Frantz DE. ACS Catal, 2014, 4: 519–528

    Article  CAS  Google Scholar 

  105. Ma S. Eur J Org Chem, 2004, 2004: 1175–1183

    Article  Google Scholar 

  106. Teng S, Chi YR, Zhou JS. Angew Chem Int Ed, 2021, 60: 4491–4495

    Article  CAS  Google Scholar 

  107. Wang H, Qian H, Zhang J, Ma S. J Am Chem Soc, 2022, 144: 12619–12626

    Article  CAS  PubMed  Google Scholar 

  108. Xu X, Wang M, Peng L, Guo C. J Am Chem Soc, 2022, 144: 21022–21029

    Article  CAS  PubMed  Google Scholar 

  109. Guo LN, Duan XH, Liang YM. Acc Chem Res, 2011, 44: 111–122

    Article  CAS  PubMed  Google Scholar 

  110. Li G, Zhang G, Zhang L. J Am Chem Soc, 2008, 130: 3740–3741

    Article  CAS  PubMed  Google Scholar 

  111. Wang Z, Ying A, Fan Z, Hervieu C, Zhang L. ACS Catal, 2017, 7: 3676–3680

    Article  Google Scholar 

  112. Hardin AR, Sarpong R. Org Lett, 2007, 9: 4547–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shu XZ, Shu D, Schienebeck CM, Tang W. Chem Soc Rev, 2012, 41: 7698–7711

    Article  CAS  PubMed  Google Scholar 

  114. Soriano E, Marco-Contelles J. Chem Eur J, 2008, 14: 6771–6779

    Article  CAS  PubMed  Google Scholar 

  115. Rojas AFL, Kyne SH, Chan PWH. Acc Chem Res, 2023, 56: 1406–1420

    Article  Google Scholar 

  116. Wang S. Tetrahedron Lett, 2018, 59: 1317–1327

    Article  CAS  Google Scholar 

  117. Jiang J, Liu Y, Hou C, Li Y, Luan Z, Zhao C, Ke Z. Org Biomol Chem, 2016, 14: 3558–3563

    Article  CAS  PubMed  Google Scholar 

  118. Correa A, Marion N, Fensterbank L, Malacria M, Nolan S, Cavallo L. Angew Chem Int Ed, 2008, 47: 718–721

    Article  CAS  Google Scholar 

  119. Johansson MJ, Gorin DJ, Staben ST, Toste FD. J Am Chem Soc, 2005, 127: 18002–18003

    Article  CAS  PubMed  Google Scholar 

  120. Shi X, Gorin DJ, Toste FD. J Am Chem Soc, 2005, 127: 5802–5803

    Article  CAS  PubMed  Google Scholar 

  121. Brambilla E, Pirovano V, Giannangeli M, Abbiati G, Caselli A, Rossi E. Org Chem Front, 2019, 6: 3078–3084

    Article  CAS  Google Scholar 

  122. Prasad BAB, Yoshimoto FK, Sarpong R. J Am Chem Soc, 2005, 127: 12468–12469

    Article  CAS  Google Scholar 

  123. Schwier T, Sromek AW, Yap DML, Chernyak D, Gevorgyan V. J Am Chem Soc, 2007, 129: 9868–9878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Marion N, Díez-González S, de Frémont P, Noble AR, Nolan SP. Angew Chem Int Ed, 2006, 45: 3647–3650

    Article  CAS  Google Scholar 

  125. Zheng TL, Liu SZ, Huo CY, Li J, Wang BW, Jin DP, Cheng F, Chen XM, Zhang XM, Xu XT, Wang SH. CCS Chem, 2021, 3: 2795–2802

    Article  CAS  Google Scholar 

  126. Wang S, Zhang L. Org Lett, 2006, 8: 4585–4587

    Article  CAS  PubMed  Google Scholar 

  127. Dudnik AS, Schwier T, Gevorgyan V. Tetrahedron, 2009, 65: 1859–1870

    Article  CAS  Google Scholar 

  128. Dudnik AS, Schwier T, Gevorgyan V. J Organomet Chem, 2009, 694: 482–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Garayalde D, Gómez-Bengoa E, Huang X, Goeke A, Nevado C. J Am Chem Soc, 2010, 132: 4720–4730

    Article  CAS  PubMed  Google Scholar 

  130. Shiroodi RK, Dudnik AS, Gevorgyan V. J Am Chem Soc, 2012, 134: 6928–6931

    Article  Google Scholar 

  131. Cho EJ, Lee D. Adv Synth Catal, 2008, 350: 2719–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cho EJ. Chem Eur J, 2012, 18: 4495–4498

    Article  CAS  PubMed  Google Scholar 

  133. Wang Y, Lu B, Zhang L. Chem Commun, 2010, 46: 9179–9181

    Article  CAS  Google Scholar 

  134. Ambrogio I, Cacchi S, Fabrizi G, Prastaro A. Tetrahedron, 2009, 65: 8916–8929

    Article  CAS  Google Scholar 

  135. Nemoto T, Zhao Z, Yokosaka T, Suzuki Y, Wu R, Hamada Y. Angew Chem Int Ed, 2013, 52: 2217–2220

    Article  CAS  Google Scholar 

  136. Daniels DSB, Jones AS, Thompson AL, Paton RS, Anderson EA. Angew Chem Int Ed, 2014, 53: 1915–1920

    Article  CAS  Google Scholar 

  137. Liu XN, Guo WL, Hou CJ, Hu XP. Synth Commun, 2013, 43: 2622–2626

    Article  CAS  Google Scholar 

  138. Locascio TM, Tunge JA. Chem Eur J, 2016, 22: 18140–18146

    Article  CAS  PubMed  Google Scholar 

  139. Ishida N, Hori Y, Okumura S, Murakami M. J Am Chem Soc, 2019, 141: 84–88

    Article  CAS  PubMed  Google Scholar 

  140. O’Broin CQ, Guiry PJ. Org Lett, 2020, 22: 879–883

    Article  PubMed  Google Scholar 

  141. Ishida N, Kamino Y, Murakami M. Synlett, 2021, 32: 1621–1624

    Article  CAS  Google Scholar 

  142. Zhang J, Chang X, Xu X, Wang H, Peng L, Guo C. Nat Commun, 2022, 13: 7049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Clark DA, Kulkarni AA, Kalbarczyk K, Schertzer B, Diver ST. J Am Chem Soc, 2006, 128: 15632–15636

    Article  CAS  PubMed  Google Scholar 

  144. Hiroi K, Kato F, Oguchi T, Saito S, Sone T. Tetrahedron Lett, 2008, 49: 3567–3569

    Article  CAS  Google Scholar 

  145. Bray CVL, Dérien S, Dixneuf P. Angew Chem Int Ed, 2009, 48: 1439–1442

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071111), the Jiangsu Specially Appointed Professor Plan, the Natural Science Foundation of Jiangsu Province (BK20201368, BK20220409), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX23_1683).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangliang Song or Liang-An Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, M., Song, L. & Chen, LA. Stereoselective synthesis of substituted 1,3-dienes from propargylic esters: electrophilic-metal or redox catalysis?. Sci. China Chem. (2024). https://doi.org/10.1007/s11426-023-1925-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11426-023-1925-4

Navigation