Skip to main content
Log in

Efficient photothermal CO2 methanation over NiFe alloy nanoparticles with enhanced localized surface plasmon resonance effect

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The methanation of CO2 using green hydrogen not only consumes CO2 as a carbon resource but also stores H2 with high density. However, the activation of CO2 molecules under mild conditions is challenging due to their inert nature. Herein, we report an efficient photothermal catalytic system using light irradiation which realizes the complete conversion of CO2 to methane without external heating. Over optimum bimetallic NiFe nanoparticles (NPs) with a Ni/Fe atomic ratio of 7, the CO2 conversion can reach up to 98% with a CH4 selectivity of 99%, and no catalyst deactivation was observed for more than 100 h, outperforming the reported catalysts. The catalytic performance is strongly dependent on the structure promoters, light absorption efficiency, NiFe particle sizes, and Ni/Fe ratio. The NiFe alloy NPs with an average size of ~21 nm dispersed on alumina nanosheets are evidenced to enhance the localized surface plasmon resonance (LSPR) effect, thus efficiently triggering the CO2 methanation. This work emphasizes and clarifies the important role of LSPR in CO2 hydrogenation, which may benefit the rational utilization of CO2 using solar power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, Peters GP, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell JG, Ciais P, Jackson RB, Alin S, Aragão LEOC, Arneth A, Arora V, Bates NR, Becker M, Benoit-Cattin A, Bittig HC, Bopp L, Bultan S, Chandra N, Chevallier F, Chini LP, Evans W, Florentie L, Forster PM, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton RA, Ilyina T, Jain AK, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken JI, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro DR, Nabel JEMS, Nakaoka SI, Niwa Y, O’Brien K, Ono T, Palmer PI, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith AJP, Sutton AJ, Tanhua T, Tans PP, Tian H, Tilbrook B, van der Werf G, Vuichard N, Walker AP, Wanninkhof R, Watson AJ, Willis D, Wiltshire AJ, Yuan W, Yue X, Zaehle S. Earth Syst Sci Data, 2020, 12: 3269–3340

    Article  Google Scholar 

  2. Cai M, Wu Z, Li Z, Wang L, Sun W, Tountas AA, Li C, Wang S, Feng K, Xu AB, Tang S, Tavasoli A, Peng M, Liu W, Helmy AS, He L, Ozin GA, Zhang X. Nat Energy, 2021, 6: 807–814

    Article  CAS  Google Scholar 

  3. Wu Z, Shen J, Li C, Zhang C, Feng K, Wang Z, Wang X, Meira DM, Cai M, Zhang D, Wang S, Chu M, Chen J, Xi Y, Zhang L, Sham TK, Genest A, Rupprechter G, Zhang X, He L. ACS Nano, 2023, 17: 1550–1559

    Article  CAS  Google Scholar 

  4. Wang Z, Yang Z, Fang R, Yan Y, Ran J, Zhang L. Chem Eng J, 2022, 429: 132322

    Article  CAS  Google Scholar 

  5. Wei J, Yao R, Han Y, Ge Q, Sun J. Chem Soc Rev, 2021, 50: 10764–10805

    Article  PubMed  CAS  Google Scholar 

  6. Gao P, Zhong L, Han B, He M, Sun Y. Angew Chem Int Ed, 2022, 61: e202210095

    Article  CAS  Google Scholar 

  7. Xie S, Ma W, Wu X, Zhang H, Zhang Q, Wang Y, Wang Y. Energy Environ Sci, 2021, 14: 37–89

    Article  CAS  Google Scholar 

  8. Mota FM, Kim DH. Chem Soc Rev, 2019, 48: 205–259

    Article  Google Scholar 

  9. Zhu X, Zong H, Pérez CJV, Miao H, Sun W, Yuan Z, Wang S, Zeng G, Xu H, Jiang Z, Ozin GA. Angew Chem Int Ed, 2023, 62: e202218694

    Article  CAS  Google Scholar 

  10. Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S. Fuel, 2016, 166: 276–296

    Article  Google Scholar 

  11. Zhang F, Li YH, Qi MY, Yamada YMA, Anpo M, Tang ZR, Xu YJ. Chem Catal, 2021, 1: 272–297

    Article  CAS  Google Scholar 

  12. Mateo D, Cerrillo JL, Durini S, Gascon J. Chem Soc Rev, 2021, 50: 2173–2210

    Article  PubMed  CAS  Google Scholar 

  13. Luo S, Ren X, Lin H, Song H, Ye J. Chem Sci, 2021, 12: 5701–5719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Song C, Wang Z, Yin Z, Xiao D, Ma D. Chem Catal, 2022, 2: 52–83

    Article  CAS  Google Scholar 

  15. Ghoussoub M, Xia M, Duchesne PN, Segal D, Ozin G. Energy Environ Sci, 2019, 12: 1122–1142

    Article  CAS  Google Scholar 

  16. Xiong Y, Liu X, Hu Y, Gu D, Jiang M, Tie Z, Jin Z. Nano Res, 2022, 15: 4965–4972

    Article  CAS  Google Scholar 

  17. Li Y, Zhang X. Adv Funct Mater, 2021, 32: 2107767

    Article  Google Scholar 

  18. Zhang X, Li X, Zhang D, Su NQ, Yang W, Everitt HO, Liu J. Nat Commun, 2017, 8: 14542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Xie B, Wong RJ, Tan TH, Higham M, Gibson EK, Decarolis D, Callison J, Aguey-Zinsou KF, Bowker M, Catlow CRA, Scott J, Amal R. Nat Commun, 2020, 11: 1615

    Article  PubMed Central  CAS  Google Scholar 

  20. Wang Z, Song H, Pang H, Ning Y, Dao TD, Wang Z, Chen H, Weng Y, Fu Q, Nagao T, Fang Y, Ye J. Appl Catal B-Environ, 2019, 250: 10–16

    Article  CAS  Google Scholar 

  21. Gu Y, Ding J, Tong X, Yao H, Yang R, Zhong Q. J CO2 Utilization, 2022, 61: 102003

    Article  CAS  Google Scholar 

  22. Li Y, Liu Z, Rao Z, Yu F, Bao W, Tang Y, Zhao H, Zhang J, Wang Z, Li J, Huang Z, Zhou Y, Li Y, Dai B. Appl Catal B-Environ, 2022, 319: 121903

    Article  CAS  Google Scholar 

  23. Tang Y, Zhao T, Han H, Yang Z, Liu J, Wen X, Wang F. Adv Sci, 2023, 10: e2300122

    Article  Google Scholar 

  24. Peng K, Ye J, Wang H, Song H, Deng B, Song S, Wang Y, Zuo L, Ye J. Appl Catal B-Environ, 2023, 324: 122262

    Article  CAS  Google Scholar 

  25. Zhao J, Shi R, Waterhouse GIN, Zhang T. Nano Energy, 2022, 102: 107650

    Article  CAS  Google Scholar 

  26. Li Z, Liu J, Shi R, Waterhouse GIN, Wen XD, Zhang T. Adv Energy Mater, 2021, 11: e202002783

    Google Scholar 

  27. Zhao J, Guo X, Shi R, Waterhouse GIN, Zhang X, Dai Q, Zhang T. Adv Funct Mater, 2022, 32: 2204056

    Article  CAS  Google Scholar 

  28. Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Angew Chem Int Ed, 2012, 51: 8008–8011

    Article  CAS  Google Scholar 

  29. Zhao Y, Jia X, Waterhouse GIN, Wu LZ, Tung CH, O’Hare D, Zhang T. Adv Energy Mater, 2016, 6: 1501974

    Article  Google Scholar 

  30. Li YT, Zhou L, Cui WG, Li ZF, Li W, Hu TL. J CO2 Utilization, 2022, 62: 102093

    Article  CAS  Google Scholar 

  31. Wei W, Jinlong G. Front Chem Sci Eng, 2011, 5: 2–10

    Article  Google Scholar 

  32. Evanoff DD, Chumanov G. J Phys Chem B, 2004, 108: 13957–13962

    Article  PubMed  CAS  Google Scholar 

  33. Wu Z, Li C, Li Z, Feng K, Cai M, Zhang D, Wang S, Chu M, Zhang C, Shen J, Huang Z, Xiao Y, Ozin GA, Zhang X, He L. ACS Nano, 2021, 15: 5696–5705

    Article  PubMed  CAS  Google Scholar 

  34. Huynh HL, Zhu J, Zhang G, Shen Y, Tucho WM, Ding Y, Yu Z. J Catal, 2020, 392: 266–277

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92145301, 22121001, 22222206, and U22A20392), and the Fundamental Research Funds for the Central Universities (20720220008 and 20720220021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang Cheng or Ye Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1876_MOESM1_ESM.pdf

Efficient photothermal CO2 methanation over NiFe alloy nanoparticles with enhanced localized surface plasmon resonance effect

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xu, Q., Han, Y. et al. Efficient photothermal CO2 methanation over NiFe alloy nanoparticles with enhanced localized surface plasmon resonance effect. Sci. China Chem. 66, 3518–3524 (2023). https://doi.org/10.1007/s11426-023-1876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1876-4

Navigation