Skip to main content
Log in

Efficient molten salt CO2 capture and selective electrochemical transformation processes toward carbon neutrality: advances, challenges, and prospects

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Atmospheric carbon dioxide (CO2) concentration has reached record levels due to excessive anthropogenic CO2 emissions from massive industrial productions. Renewable-energy-driven CO2 electroreduction is an effective method of directly converting CO2 into various value-added chemicals or materials without subsequent geological disposal treatment. Owing to their promising thermal stability, wide electrochemical window, tunable oxo-basicity, and nontoxic nature, molten salt electrolytes endow intrinsic advantages, such as fast CO2 absorption and selective electrochemical transformation, among different electrolyte species, wherein advanced carbon materials, CO, and hydrocarbons can be generated at relatively high current densities. Herein, we review the recent advances in molten salt CO2 capture and electrochemical transformation (MSCC-ET) technologies, including reaction mechanisms, CO2 absorption kinetics, electrode reaction kinetics, and product selectivity. This review highlights feasible strategies for regulating nanostructures, carbon product crystallinity, energy efficiency, overall CO2 conversion efficiency, and MSCC-ET adaptability toward practical flue gases. Moreover, suitable cost-effective inert anode candidates for the oxygen evolution reaction are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matthews HD, Wynes S. Science, 2022, 376: 1404–1409

    Article  CAS  PubMed  Google Scholar 

  2. Tierney JE, Poulsen CJ, Montañez IP, Bhattacharya T, Feng R, Ford HL, Hönisch B, Inglis GN, Petersen SV, Sagoo N, Tabor CR, Thirumalai K, Zhu J, Burls NJ, Foster GL, Goddéris Y, Huber BT, Ivany LC, Kirtland Turner S, Lunt DJ, McElwain JC, Mills BJW, Otto-Bliesner BL, Ridgwell A, Zhang YG. Science, 2020, 370: 680

    Article  Google Scholar 

  3. Goldstein A, Turner WR, Spawn SA, Anderson-Teixeira KJ, Cook-Patton S, Fargione J, Gibbs HK, Griscom B, Hewson JH, Howard JF, Ledezma JC, Page S, Koh LP, Rockström J, Sanderman J, Hole DG. Nat Clim Chang, 2020, 10: 287–295

    Article  CAS  Google Scholar 

  4. Shu DY, Deutz S, Winter BA, Baumgärtner N, Leenders L, Bardow A. Renew Sustain Energy Rev, 2023, 178: 113246

    Article  CAS  Google Scholar 

  5. Lane J, Greig C, Garnett A. Nat Clim Chang, 2021, 11: 925–936

    Article  Google Scholar 

  6. Müller LJ, Kätelhön A, Bringezu S, McCoy S, Suh S, Edwards R, Sick V, Kaiser S, Cuéllar-Franca R, El Khamlichi A, Lee JH, von der Assen N, Bardow A. Energy Environ Sci, 2020, 13: 2979–2992

    Article  Google Scholar 

  7. Abanades JC, Rubin ES, Mazzotti M, Herzog HJ. Energy Environ Sci, 2017, 10: 2491–2499

    Article  CAS  Google Scholar 

  8. Yang ZZ, He LN, Zhao YN, Li B, Yu B. Energy Environ Sci, 2011, 4: 3971–3975

    Article  CAS  Google Scholar 

  9. Nocito F, Dibenedetto A. Curr Opin Green Sustain Chem, 2020, 21: 34–43

    Article  CAS  Google Scholar 

  10. Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger AC, Amal R, He H, Park SE. Chem Soc Rev, 2020, 49: 8584–8686

    Article  CAS  PubMed  Google Scholar 

  11. He M, Sun Y, Han B. Angew Chem Int Ed, 2013, 52: 9620–9633

    Article  CAS  Google Scholar 

  12. Li D, Kassymova M, Cai X, Zang SQ, Jiang HL. Coord Chem Rev, 2020, 412: 213262

    Article  CAS  Google Scholar 

  13. Atsbha TA, Yoon T, Seongho P, Lee CJ. J CO2 Utiliz, 2021, 44: 101413

    Article  CAS  Google Scholar 

  14. Wang Z, Song H, Liu H, Ye J. Angew Chem Int Ed, 2020, 59: 8016–8035

    Article  CAS  Google Scholar 

  15. Lin H, Luo S, Zhang H, Ye J. Joule, 2022, 6: 294–314

    Article  CAS  Google Scholar 

  16. Küngas R. J Electrochem Soc, 2020, 167: 044508

    Article  Google Scholar 

  17. Wang G, Chen J, Ding Y, Cai P, Yi L, Li Y, Tu C, Hou Y, Wen Z, Dai L. Chem Soc Rev, 2021, 50: 4993–5061

    Article  CAS  PubMed  Google Scholar 

  18. Ra EC, Kim KY, Kim EH, Lee H, An K, Lee JS. ACS Catal, 2020, 10: 11318–11345

    Article  CAS  Google Scholar 

  19. Jin S, Hao Z, Zhang K, Yan Z, Chen J. Angew Chem Int Ed, 2021, 60: 20627–20648

    Article  CAS  Google Scholar 

  20. Wakerley D, Lamaison S, Wicks J, Clemens A, Feaster J, Corral D, Jaffer SA, Sarkar A, Fontecave M, Duoss EB, Baker S, Sargent EH, Jaramillo TF, Hahn C. Nat Energy, 2022, 7: 130–143

    Article  CAS  Google Scholar 

  21. Zhang W, Jin Z, Chen Z. Adv Sci, 2022, 9: 2105204

    Article  CAS  Google Scholar 

  22. Liu X, Fechler N, Antonietti M. Chem Soc Rev, 2013, 42: 8237–8265

    Article  CAS  PubMed  Google Scholar 

  23. Liu M, Steven Tay NH, Bell S, Belusko M, Jacob R, Will G, Saman W, Bruno F. Renew Sustain Energy Rev, 2016, 53: 1411–1432

    Article  CAS  Google Scholar 

  24. Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Adv Mater, 2021, 33: 2103148

    Article  CAS  Google Scholar 

  25. Zhang S, Liu Y, Fan Q, Zhang C, Zhou T, Kalantar-Zadeh K, Guo Z. Energy Environ Sci, 2021, 14: 4177–4202

    Article  CAS  Google Scholar 

  26. Bartlett HE, Johnson KE. J Electrochem Soc, 1967, 114: 457–461

    Article  CAS  Google Scholar 

  27. Yin H, Mao X, Tang D, Xiao W, Xing L, Zhu H, Wang D, Sadoway DR. Energy Environ Sci, 2013, 6: 1538–1545

    Article  CAS  Google Scholar 

  28. Ijije HV, Sun C, Chen GZ. Carbon, 2014, 73: 163–174

    Article  CAS  Google Scholar 

  29. Hu L, Song Y, Ge J, Zhu J, Jiao S. J Mater Chem A, 2015, 3: 21211–21218

    Article  CAS  Google Scholar 

  30. Ren J, Li FF, Lau J, González-Urbina L, Licht S. Nano Lett, 2015, 15: 6142–6148

    Article  CAS  PubMed  Google Scholar 

  31. Weng W, Tang L, Xiao W. J Energy Chem, 2019, 28: 128–143

    Article  Google Scholar 

  32. Li F, Liu S, Cui B, Lau J, Stuart J, Wang B, Licht S. Adv Energy Mater, 2015, 5: 1401791

    Article  Google Scholar 

  33. Wu H, Liu Y, Ji D, Li Z, Yi G, Yuan D, Wang B, Zhang Z, Wang P. J Power Sources, 2017, 362: 92–104

    Article  CAS  Google Scholar 

  34. Al-Juboori O, Sher F, Khalid U, Niazi MBK, Chen GZ. ACS Sustain Chem Eng, 2020, 8: 12877–12890

    Article  CAS  Google Scholar 

  35. Wu H, Ji D, Li L, Yuan D, Zhu Y, Wang B, Zhang Z, Licht S. Adv Mater Technol, 2016, 1: 1600092

    Article  Google Scholar 

  36. Chen Z, Gu Y, Du K, Wang X, Xiao W, Mao X, Wang D. Electrochim Acta, 2017, 253: 248–256

    Article  CAS  Google Scholar 

  37. Chen Z, Gu Y, Hu L, Xiao W, Mao X, Zhu H, Wang D. J Mater Chem A, 2017, 5: 20603–20607

    Article  CAS  Google Scholar 

  38. Jiang R, Gao M, Mao X, Wang D. Curr Opin Electrochem, 2019, 17: 38–46

    Article  CAS  Google Scholar 

  39. Ren J, Yu A, Peng P, Lefler M, Li FF, Licht S. Acc Chem Res, 2019, 52: 3177–3187

    Article  CAS  PubMed  Google Scholar 

  40. Licht S. Adv Mater, 2011, 23: 5592–5612

    Article  CAS  PubMed  Google Scholar 

  41. Weng W, Jiang BM, Wang Z, Xiao W. Sci Adv, 2020, 6: 927

    Google Scholar 

  42. Chery D, Albin V, Lair V, Cassir M. Int J Hydrogen Energy, 2014, 39: 12330–12339

    Article  CAS  Google Scholar 

  43. Ijije HV, Lawrence RC, Chen GZ. RSC Adv, 2014, 4: 35808–35817

    Article  CAS  Google Scholar 

  44. Shi H, Cai M, Li W, Chen X, Du K, Guo L, Wang P, Li P, Deng B, Yin H, Wang D. Chem Eng J, 2023, 462: 142240

    Article  CAS  Google Scholar 

  45. Matsuura F, Wakamatsu T, Natsui S, Kikuchi T, Suzuki RO. ISIJ Int, 2015, 55: 404–408

    Article  CAS  Google Scholar 

  46. Yin HY, Wang DH. Electrochemical valorization ofcarbon dioxide in molten salts. In: Materials and Processes for CO2 Capture, Conversion, and Sequestration. New York: John Wiley & Sons, Inc., 2018. 267–295

    Chapter  Google Scholar 

  47. Kaplan V, Wachtel E, Gartsman K, Feldman Y, Lubomirsky I. J Electrochem Soc, 2010, 157: B552

    Article  CAS  Google Scholar 

  48. Flood H, Förland T, Sillén LG, Linnasalmi A, Laukkanen P. Acta Chem Scand, 1947, 1: 592–604

    Article  CAS  PubMed  Google Scholar 

  49. Raju CV, Hwan Cho C, Mohana Rani G, Manju V, Umapathi R, Suk Huh Y, Pil Park J. Coord Chem Rev, 2023, 476: 214920

    Article  Google Scholar 

  50. Luo X, Zheng H, Lai W, Yuan P, Li S, Li D, Chen Y. Energy Environ Mater, 2023, 6: 12402

    Article  Google Scholar 

  51. Mao C, Chang Y, Zhao X, Dong X, Geng Y, Zhang N, Dai L, Wu X, Wang L, He Z. J Energy Chem, 2022, 75: 135–153

    Article  CAS  Google Scholar 

  52. Liu Y, Yuan D, Ji D, Li Z, Zhang Z, Wang B, Wu H. RSC Adv, 2017, 7: 52414–52422

    Article  CAS  Google Scholar 

  53. Novoselova IA, Kuleshov SV, Volkov SV, Bykov VN. Electrochim Acta, 2016, 211: 343–355

    Article  CAS  Google Scholar 

  54. Novoselova IA, Oliinyk NF, Volkov SV, Konchits AA, Yanchuk IB, Yefanov VS, Kolesnik SP, Karpets MV. Phys E-Low-Dimensional Syst Nanostruct, 2008, 40: 2231–2237

    Article  CAS  Google Scholar 

  55. Deng B, Tang J, Mao X, Song Y, Zhu H, Xiao W, Wang D. Environ Sci Technol, 2016, 50: 10588–10595

    Article  CAS  PubMed  Google Scholar 

  56. Deng B, Chen Z, Gao M, Song Y, Zheng K, Tang J, Xiao W, Mao X, Wang D. Faraday Discuss, 2016, 190: 241–258

    Article  CAS  PubMed  Google Scholar 

  57. Raganati F, Miccio F, Ammendola P. Energy Fuels, 2021, 35: 12845–12868

    Article  CAS  Google Scholar 

  58. Li M, Yang K, Abdinejad M, Zhao C, Burdyny T. Nanoscale, 2022, 14: 11892–11908

    Article  CAS  PubMed  Google Scholar 

  59. Wakamatsu T, Uchiyama T, Natsui S, Kikuchi T, Suzuki RO. Fluid Phase Equilib, 2015, 385: 48–53

    Article  CAS  Google Scholar 

  60. Ge J, Zhang L, Lu J, Zhu J, Jiao S. J Electrochem Soc, 2016, 163: E300–E304

    Article  CAS  Google Scholar 

  61. Hu L, Song Y, Ge J, Zhu J, Han Z, Jiao S. J Mater Chem A, 2017, 5: 6219–6225

    Article  CAS  Google Scholar 

  62. Gao M, Deng B, Chen Z, Tao M, Wang D. Electrochem Commun, 2019, 100: 81–84

    Article  CAS  Google Scholar 

  63. Chen Z, Deng B, Du K, Mao X, Zhu H, Xiao W, Wang D. Adv Sustain Syst, 2017, 1: 1700047

    Article  Google Scholar 

  64. Deng B, Gao M, Yu R, Mao X, Jiang R, Wang D. Appl Energy, 2019, 255: 113862

    Article  CAS  Google Scholar 

  65. Liu X, Meng J, Zhu J, Huang M, Wen B, Guo R, Mai L. Adv Mater, 2021, 33: 2007344

    Article  CAS  Google Scholar 

  66. Yang Y, Peltier CR, Zeng R, Schimmenti R, Li Q, Huang X, Yan Z, Potsi G, Selhorst R, Lu X, Xu W, Tader M, Soudackov AV, Zhang H, Krumov M, Murray E, Xu P, Hitt J, Xu L, Ko HY, Ernst BG, Bundschu C, Luo A, Markovich D, Hu M, He C, Wang H, Fang J, DiStasioJr. RA, Kourkoutis LF, Singer A, Noonan KJT, Xiao L, Zhuang L, Pivovar BS, Zelenay P, Herrero E, Feliu JM, Suntivich J, Giannelis EP, Hammes-Schiffer S, Arias T, Mavrikakis M, Mallouk TE, Brock JD, Muller DA, DiSalvo FJ, Coates GW, Abruña HD. Chem Rev, 2022, 122: 6117–6321

    Article  CAS  PubMed  Google Scholar 

  67. Gao M, Deng B, Chen Z, Tao M, Wang D. Electrochem Commun, 2018, 88: 79–82

    Article  CAS  Google Scholar 

  68. Harada T, Halliday C, Jamal A, Hatton TA. J Mater Chem A, 2019, 7: 21827–21834

    Article  CAS  Google Scholar 

  69. Hu L, Deng B, Du K, Jiang R, Dou Y, Wang D. iScience, 2020, 23: 101607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hu L, Deng B, Yang Z, Wang D. Electrochem Commun, 2020, 121: 106864

    Article  CAS  Google Scholar 

  71. Yang Z, Deng B, Hu L, Du K, Yin H, Wang D. ACS Energy Lett, 2023, 8: 1762–1771

    Article  CAS  Google Scholar 

  72. Tang D, Yin H, Mao X, Xiao W, Wang DH. Electrochim Acta, 2013, 114: 567–573

    Article  CAS  Google Scholar 

  73. Tang D, Dou Y, Yin H, Mao X, Xiao W, Wang D. J Energy Chem, 2020, 51: 418–424

    Article  Google Scholar 

  74. Tang J, Deng B, Xu F, Xiao W, Wang D. J Power Sources, 2017, 341: 419–426

    Article  CAS  Google Scholar 

  75. Gu Y, Yang J, Wang D. Acta Physico-Chim Sin, 2019, 35: 208–214

    Article  CAS  Google Scholar 

  76. Ma Y, Gu Y, Jiang D, Mao X, Wang D. ACS EST Water, 2021, 1: 1796–1806

    Article  CAS  Google Scholar 

  77. Yang J, Dou Y, Yang H, Wang D. Appl Surf Sci, 2021, 538: 148110

    Article  CAS  Google Scholar 

  78. Ma Y, Liu X, Tang M, Du K, Zhao M, Yin H, Mao X, Wang D. J Cleaner Prod, 2023, 389: 136080

    Article  CAS  Google Scholar 

  79. Jiang D, Yang J, Wang D. Langmuir, 2020, 36: 3141–3148

    Article  CAS  PubMed  Google Scholar 

  80. Deng B, Tang J, Gao M, Mao X, Zhu H, Xiao W, Wang D. Electrochim Acta, 2018, 259: 975–985

    Article  CAS  Google Scholar 

  81. Deng B, Mao X, Xiao W, Wang D. J Mater Chem A, 2017, 5: 12822–12827

    Article  CAS  Google Scholar 

  82. Lee SH, Hwang YM, Byun TS, Ko JH, Roh JS. Carbon, 2023, 208: 443–451

    Article  CAS  Google Scholar 

  83. Cabrero-Vilatela A, Weatherup RS, Braeuninger-Weimer P, Caneva S, Hofmann S. Nanoscale, 2016, 8: 2149–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu R, Deng B, Du K, Chen D, Gao M, Wang D. Carbon, 2021, 184: 426–436

    Article  CAS  Google Scholar 

  85. Hu L, Song Y, Jiao S, Liu Y, Ge J, Jiao H, Zhu J, Wang J, Zhu H, Fray DJ. ChemSusChem, 2016, 9: 588–594

    Article  CAS  PubMed  Google Scholar 

  86. Liu W, Wang X, Wang F, Du K, Zhang Z, Guo Y, Yin H, Wang D. Nat Commun, 2021, 12: 6776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu X, Ren J, Licht G, Wang X, Licht S. Adv Sustain Syst, 2019, 3: 1900056

    Article  CAS  Google Scholar 

  88. Wang XR, Licht G, Liu XY, Licht S. Adv Sustain Syst, 2022, 6: 2200481

    Google Scholar 

  89. Wang X, Licht G, Liu X, Licht S. Sci Rep, 2020, 10: 21518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Douglas A, Carter R, Li M, Pint CL. ACS Appl Mater Interfaces, 2018, 10: 19010–19018

    Article  CAS  PubMed  Google Scholar 

  91. Yu R, Deng B, Zheng K, Wang X, Du K, Wang D. Compos Commun, 2020, 22: 100464

    Article  Google Scholar 

  92. Wang X, Liu X, Licht G, Wang B, Licht S. J CO2 Utiliz, 2019, 34: 303–312

    Article  CAS  Google Scholar 

  93. Douglas A, Carter R, Muralidharan N, Oakes L, Pint CL. Carbon, 2017, 116: 572–578

    Article  CAS  Google Scholar 

  94. Jing S, Sheng R, Liang X, Gu D, Peng Y, Xiao J, Shen Y, Hu D, Xiao W. Angew Chem Int Ed, 2023, 62: e202216315

    Article  CAS  Google Scholar 

  95. Licht S, Douglas A, Ren J, Carter R, Lefler M, Pint CL. ACS Cent Sci, 2016, 2: 162–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peng J, Chen N, He R, Wang Z, Dai S, Jin X. Angew Chem Int Ed, 2017, 56: 1751–1755

    Article  CAS  Google Scholar 

  97. Moyer K, Zohair M, Eaves-Rathert J, Douglas A, Pint CL. Carbon, 2020, 165: 90–99

    Article  CAS  Google Scholar 

  98. Volodin A, Buntinx D, Ahlskog M, Fonseca A, Nagy JB, Van Haesendonck C. Nano Lett, 2004, 4: 1775–1779

    Article  CAS  Google Scholar 

  99. Zhan H, Zhang Y, Yang C, Zhang G, Gu Y. Carbon, 2017, 120: 258–264

    Article  CAS  Google Scholar 

  100. Yu R, Xiang J, Du K, Deng B, Chen D, Yin H, Liu Z, Wang D. Nano Lett, 2022, 22: 97–104

    Article  CAS  PubMed  Google Scholar 

  101. Wang DH, Xiao W. Inert Anode Development for High-Temperature Molten Salts. In: Molten salts Chemistry: From Lab to Applications. London: Elsevier, 2013. 171–186

    Chapter  Google Scholar 

  102. Zheng K, Du K, Cheng X, Jiang R, Deng B, Zhu H, Wang D. J Electrochem Soc, 2018, 165: E572–E577

    Article  CAS  Google Scholar 

  103. Du K, Yu R, Gao M, Chen Z, Mao X, Zhu H, Wang D. Corrosion Sci, 2019, 153: 12–18

    Article  CAS  Google Scholar 

  104. Du KF, Zheng KY, Chen ZG, Zhu H, Gan FX, Wang DH. Electrochim Acta, 2017, 245: 402–408

    Article  Google Scholar 

  105. Wang P, Du K, Dou Y, Zhu H, Wang D. Corrosion Sci, 2020, 166: 108450

    Article  CAS  Google Scholar 

  106. Du K, Gao E, Zhang C, Ma Y, Wang P, Yu R, Li W, Zheng K, Cheng X, Tang D, Deng B, Yin H, Wang D. Nat Commun, 2023, 14: 253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun Z, Liu C, Lu G, Song X, Sun S, Sun Y, Yu J. Energy Fuels, 2011, 25: 2655–2663

    Article  CAS  Google Scholar 

  108. Sysoev IA, Ershov VA, Kondrat’ev VV. Metallurgist, 2015, 59: 518–525

    Article  CAS  Google Scholar 

  109. Zhang H, Ran L, Zou Z, He G, Tang Y, Li J. J Sustain Metall, 2018, 4: 359–366

    Article  Google Scholar 

  110. Boutin E, Wang M, Lin JC, Mesnage M, Mendoza D, Lassalle-Kaiser B, Hahn C, Jaramillo TF, Robert M. Angew Chem Int Ed, 2019, 58: 16172–16176

    Article  CAS  Google Scholar 

  111. Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H, Li X, Yu X, Zhang Z, Liang Y, Wang H. Nat Commun, 2017, 8: 14675

    Article  PubMed  PubMed Central  Google Scholar 

  112. Yan C, Li H, Ye Y, Wu H, Cai F, Si R, Xiao J, Miao S, Xie S, Yang F, Li Y, Wang G, Bao X. Energy Environ Sci, 2018, 11: 1204–1210

    Article  CAS  Google Scholar 

  113. Abeyweera SC, Yu J, Perdew JP, Yan Q, Sun Y. Nano Lett, 2020, 20: 2806–2811

    Article  CAS  PubMed  Google Scholar 

  114. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI. Science, 2011, 334: 643–644

    Article  CAS  PubMed  Google Scholar 

  115. DiMeglio JL, Rosenthal J. J Am Chem Soc, 2013, 135: 8798–8801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu J, Li X, Liu W, Sun Y, Ju Z, Yao T, Wang C, Ju H, Zhu J, Wei S, Xie Y. Angew Chem Int Ed, 2017, 56: 9121–9125

    Article  CAS  Google Scholar 

  117. Huan TN, Simon P, Rousse G, Génois I, Artero V, Fontecave M. Chem Sci, 2017, 8: 742–747

    Article  CAS  PubMed  Google Scholar 

  118. Peng X, Tian Y, Liu Y, Wang W, Jia L, Pu J, Chi B, Li J. J CO2 Utiliz, 2020, 36: 18–24

    Article  CAS  Google Scholar 

  119. Zhang X, Song Y, Guan F, Zhou Y, Lv H, Wang G, Bao X. J Catal, 2018, 359: 8–16

    Article  CAS  Google Scholar 

  120. Jiang Y, Yang Y, Xia C, Bouwmeester HJM. J Mater Chem A, 2019, 7: 22939–22949

    Article  CAS  Google Scholar 

  121. Moomaw W, Burgherr P, Heath G. Annex II: Mehodology. In: ICPP Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge: Cambridge University Press, 2011. 10–11

    Google Scholar 

Download references

Acknowledgements This work was supported by the National Natural Science Foundation of China (52031008, 22005225), the China Postdoctoral Science Foundation (2021T140523) and the Fundamental Research Funds for the Central Universities (2042022kf1075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dihua Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Yin, H., Du, K. et al. Efficient molten salt CO2 capture and selective electrochemical transformation processes toward carbon neutrality: advances, challenges, and prospects. Sci. China Chem. 66, 3116–3135 (2023). https://doi.org/10.1007/s11426-023-1826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1826-3

Navigation