Skip to main content
Log in

Reduction of unactivated alkyl chlorides enabled by light-induced single electron transfer

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Alkyl chlorides are abundant and easily accessible starting materials. However, due to the high reduction potentials associated with unactivated alkyl chlorides, achieving their single electron reduction remains a persistent challenge. This challenge has spurred the exploration of efficient activation methods to overcome this issue. In recent years, photocatalysis has emerged as a mild and potent tool for the single electron reduction of unactivated alkyl chlorides, opening up new possibilities in this field. Considering the rapid advancements in this area, a comprehensive review that provides a conceptual understanding of this emerging field, with a specific focus on reaction design and catalytic mechanisms, would be timely and highly valuable. Hence, we present an overview of various synthetic techniques for photoinduced single electron reduction of unactivated alkyl chlorides. Furthermore, we also discuss the limitations of the present methods and future directions that lie ahead in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clayden J, Greeves N, Warren S. Organic Chemistry. Oxford: Oxford University Press, 2012

    Book  Google Scholar 

  2. Gribble GW. Acc Chem Res, 1998, 31: 141–152

    Article  CAS  Google Scholar 

  3. Alonso F, Beletskaya IP, Yus M. Chem Rev, 2002, 102: 4009–4092

    Article  PubMed  CAS  Google Scholar 

  4. Vechorkin O, Barmaz D, Proust V, Hu X. J Am Chem Soc, 2009, 131: 12078–12079

    Article  PubMed  CAS  Google Scholar 

  5. Lu Z, Fu G. Angew Chem Int Ed, 2010, 49: 6676–6678

    Article  CAS  Google Scholar 

  6. Lu Z, Wilsily A, Fu GC. J Am Chem Soc, 2011, 133: 8154–8157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sakai HA, Liu W, Le C, MacMillan DWC. J Am Chem Soc, 2020, 142: 11691–11697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cybularczyk-Cecotka M, Szczepanik J, Giedyk M. Nat Catal, 2020, 3: 872–886

    Article  CAS  Google Scholar 

  9. Frisch AC, Beller M. Angew Chem Int Ed, 2005, 44: 674–688

    Article  CAS  Google Scholar 

  10. Krische MJ. Radicals in synthesis III. In: Topics in Current Chemistry. Berlin: Springer, 2012. 320

    Google Scholar 

  11. Luo YR. Comprehensive Handbook of Chemical Bond Energies. Boca Raton: CRC Press, 2007

    Book  Google Scholar 

  12. Stephenson CRJ, Yoon TP, MacMillan DWC, Eds. Visible Light Photocatalysis in Organic Chemistry. Weinheim: Wiley-VCH, 2018

    Google Scholar 

  13. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Garbarino S, Ravelli D, Protti S, Basso A. Angew Chem Int Ed, 2016, 55: 15476–15484

    Article  Google Scholar 

  15. Marzo L, Pagire SK, Reiser O, König B. Angew Chem Int Ed, 2018, 57: 10034–10072

    Article  CAS  Google Scholar 

  16. Crisenza GEM, Mazzarella D, Melchiorre P. J Am Chem Soc, 2020, 142: 5461–5476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Melchiorre P. Chem Rev, 2022, 122: 1483–1484

    Article  PubMed  CAS  Google Scholar 

  18. Silvi M, Melchiorre P. Nature, 2018, 554: 41–49

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Koike T, Akita M. Trends Chem, 2021, 3: 416–427

    Article  Google Scholar 

  20. Liao LL, Song L, Yan SS, Ye JH, Yu DG. Trends Chem, 2022, 4: 512–527

    Article  CAS  Google Scholar 

  21. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    Article  CAS  Google Scholar 

  22. Wang P, Zhao Q, Xiao W, Chen J. Green Synthesis Catal, 2020, 1: 42–51

    Article  Google Scholar 

  23. Nicewicz DA, MacMillan DWC. Science, 2008, 322: 77–80

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  24. Rono LJ, Yayla HG, Wang DY, Armstrong MF, Knowles RR. J Am Chem Soc, 2013, 135: 17735–17738

    Article  PubMed  CAS  Google Scholar 

  25. Murphy JJ, Bastida D, Paria S, Fagnoni M, Melchiorre P. Nature, 2016, 532: 218–222

    Article  PubMed  ADS  CAS  Google Scholar 

  26. Proctor RSJ, Davis HJ, Phipps RJ. Science, 2018, 360: 419–422

    Article  PubMed  ADS  CAS  Google Scholar 

  27. Jurczyk J, Lux MC, Adpressa D, Kim SF, Lam Y, Yeung CS, Sarpong R. Science, 2021, 373: 1004–1012

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  28. Huang M, Zhang L, Pan T, Luo S. Science, 2022, 375: 869–874

    Article  PubMed  ADS  CAS  Google Scholar 

  29. Berger M, Ma D, Baumgartner Y, Wong THF, Melchiorre P. Nat Catal, 2023, 6: 332–338

    Article  CAS  Google Scholar 

  30. Dai L, Xia Z, Gao Y, Gao Z, Ye S. Angew Chem Int Ed, 2019, 58: 18124–18130

    Article  CAS  Google Scholar 

  31. Dai L, Guo J, Huang Q, Lu Y. Sci Adv, 2022, 8: eadd2574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Du J, Skubi KL, Schultz DM, Yoon TP. Science, 2014, 344: 392–396

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  33. Tellis JC, Primer DN, Molander GA. Science, 2014, 345: 433–436

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  34. Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DWC. J Am Chem Soc, 2016, 138: 1832–1835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC. Science, 2016, 351: 681–684

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  36. Chen C, Peters JC, Fu GC. Nature, 2021, 596: 250–256

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  37. Jiang X, Xiong W, Deng S, Lu FD, Jia Y, Yang Q, Xue LY, Qi X, Tunge JA, Lu LQ, Xiao WJ. Nat Catal, 2022, 5: 788–797

    Article  CAS  Google Scholar 

  38. Xiong W, Jiang X, Wang WC, Cheng Y, Lu LQ, Gao K, Xiao WJ. J Am Chem Soc, 2023, 145: 7983–7991

    Article  PubMed  CAS  Google Scholar 

  39. Guo J, Shen ZA, Zhou X, Dai L, Lu Y. Sci China Chem, 2023, 66: 127–132

    Article  CAS  Google Scholar 

  40. Chen KQ, Sheng H, Liu Q, Shao PL, Chen XY. Sci China Chem, 2021, 64: 7–16

    Article  CAS  Google Scholar 

  41. Crespi S, Fagnoni M. Chem Rev, 2020, 120: 9790–9833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gál B, Bucher C, Burns NZ. Marine Drugs, 2016, 14: 206

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ertl P, Schuhmann T. J Nat Prod, 2019, 82: 1258–1263

    Article  PubMed  CAS  Google Scholar 

  44. Constantin T, Górski B, Tilby MJ, Chelli S, Juliá F, Llaveria J, Gillen KJ, Zipse H, Lakhdar S, Leonori D. Science, 2022, 377: 1323–1328

    Article  PubMed  ADS  CAS  Google Scholar 

  45. Juliá F, Constantin T, Leonori D. Chem Rev, 2022, 122: 2292–2352

    Article  PubMed  Google Scholar 

  46. Chen JJ, Huang HM. Tetrahedron Lett, 2022, 102: 153945

    Article  CAS  Google Scholar 

  47. Matsubara R, Yabuta T, Md Idros U, Hayashi M, Ema F, Kobori Y, Sakata K. J Org Chem, 2018, 83: 9381–9390

    Article  PubMed  CAS  Google Scholar 

  48. Matsubara R, Shimada T, Kobori Y, Yabuta T, Osakai T, Hayashi M. Chem Asian J, 2016, 11: 2006–2010

    Article  PubMed  CAS  Google Scholar 

  49. Griffin GW, Horn KA. J Am Chem Soc, 1987, 109: 4919–4926

    Article  CAS  Google Scholar 

  50. Thakar N, Polder N, Djanashvili K, Vanbekkum H, Kapteijn F, Moulijn J. J Catal, 2007, 246: 344–350

    Article  CAS  Google Scholar 

  51. Simmons EM, Hartwig JF. Angew Chem Int Ed, 2012, 51: 3066–3072

    Article  CAS  Google Scholar 

  52. Konermann L, Pan J, Liu YH. Chem Soc Rev, 2011, 40: 1224–1234

    Article  PubMed  CAS  Google Scholar 

  53. Allen PH, Hickey MJ, Kingston LP, Wilkinson DJ. Labelled Comp Radiopharmac, 2010, 53: 731–738

    Article  CAS  Google Scholar 

  54. Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew Chem Int Ed, 2018, 57: 1758–1784

    Article  CAS  Google Scholar 

  55. Pirali T, Serafini M, Cargnin S, Genazzani AA. J Med Chem, 2019, 62: 5276–5297

    Article  PubMed  CAS  Google Scholar 

  56. Li Y, Ye Z, Lin YM, Liu Y, Zhang Y, Gong L. Nat Commun, 2021, 12: 2894

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  57. Wei D, Li X, Shen L, Ding Y, Liang K, Xia C. Org Chem Front, 2021, 8: 6364–6370

    Article  CAS  Google Scholar 

  58. Liang K, Liu Q, Shen L, Li X, Wei D, Zheng L, Xia C. Chem Sci, 2020, 11: 6996–7002

    Article  CAS  Google Scholar 

  59. Wu S, Schiel F, Melchiorre P. Angew Chem Int Ed, 2023, 62: e202306364

    Article  CAS  Google Scholar 

  60. Ghosh I, Ghosh T, Bardagi JI, König B. Science, 2014, 346: 725–728

    Article  PubMed  ADS  CAS  Google Scholar 

  61. Giedyk M, Narobe R, Weiß S, Touraud D, Kunz W, König B. Nat Catal, 2020, 3: 40–47

    Article  CAS  Google Scholar 

  62. Kerzig C, Guo X, Wenger OS. J Am Chem Soc, 2019, 141: 2122–2127

    Article  PubMed  CAS  Google Scholar 

  63. Creutz SE, Lotito KJ, Fu GC, Peters JC. Science, 2012, 338: 647–651

    Article  PubMed  ADS  CAS  Google Scholar 

  64. Ratani TS, Bachman S, Fu GC, Peters JC. J Am Chem Soc, 2015, 137: 13902–13907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Parasram M, Chuentragool P, Sarkar D, Gevorgyan V. J Am Chem Soc, 2016, 138: 6340–6343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Chuentragool P, Kurandina D, Gevorgyan V. Angew Chem Int Ed, 2019, 58: 11586–11598

    Article  CAS  Google Scholar 

  67. Lee GS, Kim D, Hong SH. Nat Commun, 2021, 12: 991

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  68. Muralirajan K, Kancherla R, Gimnkhan A, Rueping M. Org Lett, 2021, 23: 6905–6910

    Article  PubMed  CAS  Google Scholar 

  69. Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DWC. Science, 2014, 345: 437–440

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  70. Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DWC. Chem Rev, 2022, 122: 1485–1542

    Article  PubMed  CAS  Google Scholar 

  71. Claros M, Ungeheuer F, Franco F, Martin-Diaconescu V, Casitas A, Lloret-Fillol J. Angew Chem Int Ed, 2019, 58: 4869–4874

    Article  CAS  Google Scholar 

  72. Claros M, Casitas A, Lloret-Fillol J. Synlett, 2019, 30: 1496–1507

    Article  CAS  Google Scholar 

  73. Aragón J, Sun S, Pascual D, Jaworski S, Lloret-Fillol J. Angew Chem Int Ed, 2022, 61: e202114365

    Article  Google Scholar 

  74. Chen L, Kametani Y, Imamura K, Abe T, Shiota Y, Yoshizawa K, Hisaeda Y, Shimakoshi H. Chem Commun, 2019, 55: 13070–13073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001248), the Fundamental Research Funds for the Central Universities, and the University of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yu Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Zhang, ZF. & Chen, XY. Reduction of unactivated alkyl chlorides enabled by light-induced single electron transfer. Sci. China Chem. 67, 471–481 (2024). https://doi.org/10.1007/s11426-023-1787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1787-3

Navigation