Skip to main content
Log in

Visible-light-driven external-photocatalyst-free alkylative carboxylation of alkenes with CO2

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Herein, we report a novel protocol for visible-light-driven alkylative carboxylation of alkenes with CO2 in the absence of external photocatalyst. Under the irradiation of visible light, a variety of 4-alkyl-1,4-dihydropyridines (alkyl-DHPs) serve as not only alkyl radical precursors but also photoexcited reductants probably with the potential to reduce benzyl radicals. Several styrenes and acrylates are applicable in this reaction to give structurally diverse carboxylic acids in good to excellent yields. These reactions feature mild reaction conditions (1 atm of CO2, room temperature, visible light, photocatalyst- and transition metal-free), good functional group tolerance, easy scalability, as well as high regio-, and chemo-selectivity. Mechanistic investigations provide evidence that alkyl radical, benzyl radical and carbanion might be involved in this reaction, providing a novel strategy for CO2 utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Das S. CO2as a Building Block in Organic Synthesis. Weinheim: Wiley-VCH, 2020

    Book  Google Scholar 

  2. Liu Q, Wu L, Jackstell R, Beller M. Nat Commun, 2015, 6: 5933

    Article  PubMed  Google Scholar 

  3. Song QW, Zhou ZH, He LN. Green Chem, 2017, 19: 3707–3728

    Article  CAS  Google Scholar 

  4. Wang S, Xi C. Chem Soc Rev, 2019, 48: 382–404

    Article  CAS  PubMed  Google Scholar 

  5. Grignard B, Gennen S, Jérôme C, Kleij AW, Detrembleur C. Chem Soc Rev, 2019, 48: 4466–4514

    Article  CAS  PubMed  Google Scholar 

  6. Maag H. Prodrugs of Carboxylic Acids. New York: Springer, 2007

    Book  Google Scholar 

  7. Ye JH, Ju T, Huang H, Liao LL, Yu DG. Acc Chem Res, 2021, 54: 2518–2531

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Hou Z. Curr Opin Green Sustain Chem, 2017, 3: 17–21

    Article  Google Scholar 

  9. Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew Chem Int Ed, 2018, 57: 15948–15982

    Article  CAS  Google Scholar 

  10. Yan SS, Fu Q, Liao LL, Sun GQ, Ye JH, Gong L, Bo-Xue YZ, Yu DG. Coord Chem Rev, 2018, 374: 439–463

    Article  CAS  Google Scholar 

  11. Luan YX, Ye M. Tetrahedron Lett, 2018, 59: 853–861

    Article  CAS  Google Scholar 

  12. Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao Y, He X, Wang N, Li HR, He LN. Chin J Chem, 2018, 36: 644–659

    Article  CAS  Google Scholar 

  14. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    Article  CAS  Google Scholar 

  15. Zhang Z, Gong L, Zhou XY, Yan SS, Li J, Yu DG. Acta Chim Sin, 2019, 77: 783–793

    Article  CAS  Google Scholar 

  16. Hou J, Li JS, Wu J. Asian J Org Chem, 2018, 7: 1439–1447

    Article  CAS  Google Scholar 

  17. Yeung CS. Angew Chem Int Ed, 2019, 58: 5492–5502

    Article  CAS  Google Scholar 

  18. Zhang Z, Ye JH, Ju T, Liao LL, Huang H, Gui YY, Zhou WJ, Yu DG. ACS Catal, 2020, 10: 10871–10885

    Article  CAS  Google Scholar 

  19. He X, Qiu LQ, Wang WJ, Chen KH, He LN. Green Chem, 2020, 22: 7301–7320

    Article  CAS  Google Scholar 

  20. Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Romero NA, Nicewicz DA. Chem Rev, 2016, 116: 10075–10166

    Article  CAS  PubMed  Google Scholar 

  22. Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898–6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murata K, Numasawa N, Shimomaki K, Takaya J, Iwasawa N. Chem Commun, 2017, 53: 3098–3101

    Article  CAS  Google Scholar 

  24. Murata K, Numasawa N, Shimomaki K, Takaya J, Iwasawa N. Front Chem, 2019, 7: 371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seo H, Liu A, Jamison TF. J Am Chem Soc, 2017, 139: 13969–13972

    Article  CAS  PubMed  Google Scholar 

  26. Meng QY, Wang S, Huff GS, König B. J Am Chem Soc, 2018, 140: 3198–3201

    Article  CAS  PubMed  Google Scholar 

  27. Huang H, Ye JH, Zhu L, Ran CK, Miao M, Wang W, Chen H, Zhou WJ, Lan Y, Yu B, Yu DG. CCS Chem, 2020, 2: 1746–1756

    Google Scholar 

  28. Yatham VR, Shen Y, Martin R. Angew Chem Int Ed, 2017, 56: 10915–10919

    Article  CAS  Google Scholar 

  29. Hou J, Ee A, Cao H, Ong HW, Xu JH, Wu J. Angew Chem Int Ed, 2018, 57: 17220–17224

    Article  CAS  Google Scholar 

  30. Zhang B, Yi Y, Wu ZQ, Chen C, Xi C. Green Chem, 2020, 22: 5961–5965

    Article  CAS  Google Scholar 

  31. Liao LL, Cao GM, Jiang YX, Jin XH, Hu XL, Chruma JJ, Sun GQ, Gui YY, Yu DG. J Am Chem Soc, 2021, 143: 2812–2821

    Article  CAS  PubMed  Google Scholar 

  32. Fu Q, Bo ZY, Ye JH, Ju T, Huang H, Liao LL, Yu DG. Nat Commun, 2019, 10: 3592

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang H, Gao Y, Zhou C, Li G. J Am Chem Soc, 2020, 142: 8122–8129

    Article  CAS  PubMed  Google Scholar 

  34. Zhou WJ, Wang ZH, Liao LL, Jiang YX, Cao KG, Ju T, Li Y, Cao GM, Yu DG. Nat Commun, 2020, 11: 3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. During the revision of this manuscript, Sun and Cheng reported an elegant and very similar visible-light photoredox-catalyzed α-aminomethyl carboxylation of styrenes with CO2, see: Zhou C, Li M, Sun J, Cheng J, Sun S. Org Lett, 2021, 23: 2895–2899

    Article  CAS  PubMed  Google Scholar 

  36. With electrochemical methods, Lin reported a reductive carbofunctionalization of alkenes with CO2, see: Zhang W, Lin S. J Am Chem Soc, 2020, 142: 20661–20670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ju T, Zhou YQ, Cao KG, Fu Q, Ye JH, Sun GQ, Liu XF, Chen L, Liao LL, Yu DG. Nat Catal, 2021, 4: 304–311

    Article  Google Scholar 

  38. Johnson, MK, Smith, AD. Iron-sulfur proteins. In: King RB, Ed. Encyclopedia of Inorganic Chemistry. 2nd Ed. Weinheim: Wiley-VCH, 2005

    Google Scholar 

  39. Rickard D, Luther GW. Chem Rev, 2007, 107: 514–562

    Article  CAS  PubMed  Google Scholar 

  40. Ye JH, Miao M, Huang H, Yan SS, Yin ZB, Zhou WJ, Yu DG. Angew Chem Int Ed, 2017, 56: 15416–15420

    Article  CAS  Google Scholar 

  41. Zheng C, You SL. Chem Soc Rev, 2012, 41: 2498–2518

    Article  CAS  PubMed  Google Scholar 

  42. Jung J, Kim J, Park G, You Y, Cho EJ. Adv Synth Catal, 2016, 358: 74–80

    Article  CAS  Google Scholar 

  43. Panferova LI, Tsymbal AV, Levin VV, Struchkova MI, Dilman AD. Org Lett, 2016, 18: 996–999

    Article  CAS  PubMed  Google Scholar 

  44. Chen W, Tao H, Huang W, Wang G, Li S, Cheng X, Li G. Chem Eur J, 2016, 22: 9546–9550

    Article  CAS  PubMed  Google Scholar 

  45. Wang PZ, Chen JR, Xiao WJ. Org Biomol Chem, 2019, 17: 6936–6951

    Article  CAS  PubMed  Google Scholar 

  46. Buzzetti L, Prieto A, Roy SR, Melchiorre P. Angew Chem Int Ed, 2017, 56: 15039–15043

    Article  CAS  Google Scholar 

  47. Goti G, Bieszczad B, Vega-Peñaloza A, Melchiorre P. Angew Chem Int Ed, 2019, 58: 1213–1217

    Article  CAS  Google Scholar 

  48. van Leeuwen T, Buzzetti L, Perego LA, Melchiorre P. Angew Chem Int Ed, 2019, 58: 4953–4957

    Article  CAS  Google Scholar 

  49. Bieszczad B, Perego LA, Melchiorre P. Angew Chem Int Ed, 2019, 58: 16878–16883

    Article  CAS  Google Scholar 

  50. Pope BM, Yamamoto Y, Tarbell DS. Org Synth, 1977, 57: 45

    Article  CAS  Google Scholar 

  51. Dean CS, Tarbell DS, Friederang AW. J Org Chem, 1970, 35: 3393–3397

    Article  CAS  Google Scholar 

  52. Marzo L, Pagire SK, Reiser O, König B. Angew Chem Int Ed, 2018, 57: 10034–10072

    Article  CAS  Google Scholar 

  53. Liu B, Lim CH, Miyake GM. J Am Chem Soc, 2017, 139: 13616–13619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang M, Cao T, Xu T, Liao S. Org Lett, 2019, 21: 8673–8678

    Article  CAS  PubMed  Google Scholar 

  55. Li G, Yan Q, Gan Z, Li Q, Dou X, Yang D. Org Lett, 2019, 21: 7938–7942

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21822108, 21772129), the Fok Ying Tung Education Foundation (161013), Sichuan Science and Technology Program (20CXTD0112), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ming Yu or Da-Gang Yu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, YN., Jin, XH., Liao, LL. et al. Visible-light-driven external-photocatalyst-free alkylative carboxylation of alkenes with CO2. Sci. China Chem. 64, 1164–1169 (2021). https://doi.org/10.1007/s11426-021-1004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1004-y

Navigation