Skip to main content
Log in

An anthraquinone-based Cu(I) cyclic trinuclear complex for photo-catalyzing C-C coupling reactions

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Development of transition metal-based photocatalysts with low cost, strong visible light absorption, and high efficiency is a long-stand pursuit for advanced organic synthesis, yet remains highly challenging. In this article, an anthraquinone-based copper(I) cyclic trinuclear complex (1) was designed and it featured strong visible light absorption, high charge separation efficiency and photochemical properties. Complex 1 as a heterogeneous photocatalyst can efficiently catalyze homo-coupling of terminal alkynes and denitrification-oxidative coupling reaction between hydrazinopyridine and terminal alkynes with excellent yield (up to 99%), broad substrate tolerance (27 examples) and superior reusability (up to 10 cycles without loss of performance) under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv H, Geletii YV, Zhao C, Vickers JW, Zhu G, Luo Z, Song J, Lian T, Musaev DG, Hill CL. Chem Soc Rev, 2012, 41: 7572–7589

    Article  PubMed  CAS  Google Scholar 

  2. Kim D, Sakimoto KK, Hong D, Yang P. Angew Chem Int Ed, 2015, 54: 3259–3266

    Article  CAS  Google Scholar 

  3. Li J, Yuan H, Zhang W, Jin B, Feng Q, Huang J, Jiao Z. Carbon Energy, 2022, 4: 294–331

    Article  CAS  Google Scholar 

  4. Qiu X, Zhang Y, Zhu Y, Long C, Su L, Liu S, Tang Z. Adv Mater, 2021, 33: 2001731

    Article  CAS  Google Scholar 

  5. Chang P, Wang Y, Wang Y, Zhu Y. Chem Eng J, 2022, 450: 137804

    Article  CAS  Google Scholar 

  6. Gao C, Wang J, Xu H, Xiong Y. Chem Soc Rev, 2017, 46: 2799–2823

    Article  PubMed  CAS  Google Scholar 

  7. Wang P, Guo S, Wang HJ, Chen KK, Zhang N, Zhang ZM, Lu TB. Nat Commun, 2019, 10: 3155

    Article  PubMed  PubMed Central  Google Scholar 

  8. Takizawa S, Ikuta N, Zeng F, Komaru S, Sebata S, Murata S. Inorg Chem, 2016, 55: 8723–8735

    Article  PubMed  CAS  Google Scholar 

  9. Zhang N, Chen KK, Guo S, Wang P, Zhang M, Zhao J, Zhang ZM, Lu TB. Appl Catal B-Environ, 2019, 253: 105–110

    Article  CAS  Google Scholar 

  10. Guo S, Chen KK, Dong R, Zhang ZM, Zhao J, Lu TB. ACS Catal, 2018, 8: 8659–8670

    Article  CAS  Google Scholar 

  11. Wang P, Dong R, Guo S, Zhao J, Zhang ZM, Lu TB. Natl Sci Rev, 2020, 7: 1459–1467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wei S, Liang H, Dao A, Xie Y, Cao F, Ren Q, Yadav AK, Kushwaha R, Mandal AA, Banerjee S, Zhang P, Ji S, Huang H. Sci China Chem, 2023, 66: 1482–1488

    Article  CAS  Google Scholar 

  13. Wang Y, Lin X, Mo K, Xie M, Huang Y, Ning G, Li D. Angew Chem, 2023, 135: e202218369

    Article  Google Scholar 

  14. Wenger OS. J Am Chem Soc, 2018, 140: 13522–13533

    Article  PubMed  CAS  Google Scholar 

  15. Wang E, Chen K, Chen Y, Zhang J, Lin X, Chen M. Sci China Chem, 2021, 64: 17–21

    Article  CAS  Google Scholar 

  16. Hernandez-Perez AC, Collins SK. Acc Chem Res, 2016, 49: 1557–1565

    Article  PubMed  CAS  Google Scholar 

  17. Mara MW, Fransted KA, Chen LX. Coord Chem Rev, 2015, 282–283: 2–18

    Article  Google Scholar 

  18. Forero Cortés PA, Marx M, Trose M, Beller M. Chem Catal, 2021, 1: 298–338

    Article  Google Scholar 

  19. Zhong M, Pannecoucke X, Jubault P, Poisson T. Beilstein J Org Chem, 2020, 16: 451–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang Y, Schulz M, Wächtler M, Karnahl M, Dietzek B. Coord Chem Rev, 2018, 356: 127–146

    Article  CAS  Google Scholar 

  21. Chen KK, Qin CC, Ding MJ, Guo S, Lu TB, Zhang ZM. Proc Natl Acad Sci USA, 2022, 119: e2213479119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Xia RQ, Zheng J, Wei RJ, He J, Ye DQ, Li MD, Ning GH, Li D. Inorg Chem Front, 2022, 9: 2928–2937

    Article  CAS  Google Scholar 

  23. Dias HVR, Diyabalanage HVK, Eldabaja MG, Elbjeirami O, Rawashdeh-Omary MA, Omary MA. J Am Chem Soc, 2005, 127: 7489–7501

    Article  PubMed  CAS  Google Scholar 

  24. Ni WX, Li M, Zheng J, Zhan SZ, Qiu YM, Ng SW, Li D. Angew Chem Int Ed, 2013, 52: 13472–13476

    Article  CAS  Google Scholar 

  25. Zhang ZY, Ye DQ, Gao QQ, Shi ZC, Xie M, Zhan SZ, Huang YL, Ning GH, Li D. Inorg Chem Front, 2021, 8: 2299–2304

    Article  CAS  Google Scholar 

  26. Shi ZC, Chen W, Zhan SZ, Li M, Xie M, Li YY, Ng SW, Huang YL, Zhang Z, Ning GH, Li D. Inorg Chem Front, 2020, 7: 1437–1444

    Article  CAS  Google Scholar 

  27. Larionov VA, Stashneva AR, Titov AA, Lisov AA, Medvedev MG, Smol’yakov AF, Tsedilin AM, Shubina ES, Maleev VI. J Catal, 2020, 390: 37–45

    Article  CAS  Google Scholar 

  28. Patterson MR, Dias HVR. Dalton Trans, 2022, 51: 375–383

    Article  CAS  Google Scholar 

  29. Lin X, Wang Y, Chen X, You P, Mo K, Ning G, Li D. Angew Chem Int Ed, 2023, 62: e202306497

    Article  CAS  Google Scholar 

  30. Zheng J, Lu Z, Wu K, Ning GH, Li D. Chem Rev, 2020, 120: 9675–9742

    Article  PubMed  CAS  Google Scholar 

  31. Li H, Luo J, Zhang ZY, Wei RJ, Xie M, Huang YL, Ning GH, Li D. Inorg Chem, 2022, 61: 414–421

    Article  PubMed  CAS  Google Scholar 

  32. Li Y, Lei M, Gong L. Nat Catal, 2019, 2: 1016–1026

    Article  CAS  Google Scholar 

  33. Lee W, Jung S, Kim M, Hong S. J Am Chem Soc, 2021, 143: 3003–3012

    Article  PubMed  CAS  Google Scholar 

  34. Zhou MJ, Zhang L, Liu G, Xu C, Huang Z. J Am Chem Soc, 2021, 143: 16470–16485

    Article  PubMed  CAS  Google Scholar 

  35. Yuan B, Mahor D, Fei Q, Wever R, Alcalde M, Zhang W, Hollmann F. ACS Catal, 2020, 10: 8277–8284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Zhao L, Cai W, Ji G, Wei J, Du Z, He C, Duan C. Inorg Chem, 2022, 61: 9493–9503

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Z, Tang Z, Zhou Y, Wang P, Yang J, Zhu S. Comput Theor Chem, 2022, 1217: 113865

    Article  CAS  Google Scholar 

  38. Mayer SF, Steinreiber A, Orru RVA, Faber K. J Org Chem, 2002, 67: 9115–9121

    Article  PubMed  CAS  Google Scholar 

  39. Liu J, Lam JWY, Tang BZ. Chem Rev, 2009, 109: 5799–5867

    Article  PubMed  CAS  Google Scholar 

  40. Zhu Y, Deng N, Feng M, Liu P. Chin J Catal, 2019, 40: 1505–1515

    Article  CAS  Google Scholar 

  41. Sagadevan A, Charpe VP, Hwang KC. Catal Sci Technol, 2016, 6: 7688–7692

    Article  CAS  Google Scholar 

  42. Xu H, Wu K, Tian J, Zhu L, Yao X. Green Chem, 2018, 20: 793–797

    Article  CAS  Google Scholar 

  43. Duan H, Chen X, Yang YN, Zhao J, Lin XC, Tang WJ, Gao Q, Ning GH, Li D. J Mater Chem A, 2023, 11: 12777–12783

    Article  CAS  Google Scholar 

  44. Wei RJ, You PY, Duan H, Xie M, Xia RQ, Chen X, Zhao X, Ning GH, Cooper AI, Li D. J Am Chem Soc, 2022, 144: 17487–17495

    Article  PubMed  CAS  Google Scholar 

  45. Wei RJ, Zhou HG, Zhang ZY, Ning GH, Li D. CCS Chem, 2021, 3: 2045–2053

    Article  CAS  Google Scholar 

  46. Ouyang K, Hao W, Zhang WX, Xi Z. Chem Rev, 2015, 115: 12045–12090

    Article  PubMed  CAS  Google Scholar 

  47. Taylor RD, MacCoss M, Lawson ADG. J Med Chem, 2014, 57: 5845–5859

    Article  PubMed  CAS  Google Scholar 

  48. Charpe VP, Hande AA, Sagadevan A, Hwang KC. Green Chem, 2018, 20: 4859–4864

    Article  CAS  Google Scholar 

  49. Kong Y, Wei K, Yan G. Org Chem Front, 2022, 9: 6114–6128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Guo-Hong Ning is thankful for the support from the Guangdong Basic and Applied Basic Research Foundation (2019B151502024) and the Guangzhou Science and Technology Project (202201020038). This work was supported by the National Natural Science Foundation of China (22371091, 21975104, 22150004, 22101099) and the Guangdong Major Project of Basic and Applied Research (2019B030302009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hong Ning.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YM., Mo, KM., Luo, X. et al. An anthraquinone-based Cu(I) cyclic trinuclear complex for photo-catalyzing C-C coupling reactions. Sci. China Chem. 66, 3525–3531 (2023). https://doi.org/10.1007/s11426-023-1777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1777-y

Navigation