Skip to main content
Log in

Introducing alkoxy groups as outer side chains and substituents of π-bridges obtains high-performance medium-bandgap polymerized small molecule acceptors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The medium-bandgap polymerized small molecule acceptors (PSMAs) have broad application scenarios. However, the effort in the molecular design of the high-performance medium-bandgap PSMAs is limited. In this article, we introduce alkoxy groups as outer side chains and as substituents of the thiophene π-bridges of the high-performance PSMA PY-IT to synthesize a medium-bandgap PSMA PO-TO. Due to that the non-covalent interaction between the alkoxy groups and the terminal groups of the small molecule acceptor (SMA) unit can weaken the intramolecular charge transfer (ICT) effect, the bandgap of PO-TO is enlarged and its absorption is blue-shifted compared with PY-IT, while the absorbance of PO-TO solution and film is enhanced significantly compare with that of PY-IT. When blended PO-TO with the polymer donor PBQx-TF, the corresponding all-polymer solar cells (all-PSCs) exhibit an open-circuit voltage (Voc) exceeding 1.04 V with a power conversion efficiency (PCE) of 13.75%. Furthermore, PO-TO was used as the third component to fabricate ternary all-PSCs with PBQx-TF as the polymer donor and PY-IT as the main polymer acceptor, and the ternary all-PSCs based on PBQx-TF:PY-IT:PO-TO (1:1:0.2, w/w/w) demonstrated a high PCE of 17.71% with simultaneously improved Voc of 0.940 V, short-circuit current density (Jsc) of 24.60 mA cm−2 and fill factor (FF) of 76.81%. In comparison, the binary all-PSCs based on PBQx-TF:PY-IT showed a PCE of 16.77%. This result indicates that introducing alkoxy groups is a promising strategy for synthesizing high-performance medium-bandgap PSMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng X, Zuo L, Yan K, Shan S, Chen T, Ding G, Xu B, Yang X, Hou J, Shi M, Chen H. Energy Environ Sci, 2023, 16: 2284–2294

    Article  CAS  Google Scholar 

  2. Chen Y, Wan J, Xu G, Wu X, Li X, Shen Y, Yang F, Ou X, Li Y, Li Y. Sci China Chem, 2022, 65: 1164–1172

    Article  CAS  Google Scholar 

  3. Zhao F, Zhou J, He D, Wang C, Lin Y. J Mater Chem C, 2021, 9: 15395–15406

    Article  CAS  Google Scholar 

  4. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 224–268

    Article  CAS  Google Scholar 

  5. Gao L, Zhang ZG, Xue L, Min J, Zhang J, Wei Z, Li Y. Adv Mater, 2016, 28: 1884–1890

    Article  CAS  PubMed  Google Scholar 

  6. Zhu XM, Bao SN, Yang H, Fan HY, Fan CL, Li XX, Hu KW, Cao HY, Cui CH, Li YF. Chin J Polym Sci, 2022, 40: 960–967

    Article  CAS  Google Scholar 

  7. Duan L, Uddin A. Adv Sci, 2020, 7: 1903259

    Article  CAS  Google Scholar 

  8. Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507

    Article  CAS  Google Scholar 

  9. Zhang Z, Li Y. Angew Chem Int Ed, 2021, 60: 4422–4433

    Article  CAS  Google Scholar 

  10. Li XJ, Sun GP, Gong YF, Li YF. Chin J Polym Sci, 2023, 41: 640–651

    Article  CAS  Google Scholar 

  11. Sun G, Jiang X, Li X, Meng L, Zhang J, Qin S, Kong X, Li J, Xin J, Ma W, Li Y. Nat Commun, 2022, 13: 5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang J, Han C, Wen S, Bi F, Hu Z, Li Y, Yang C, Bao X, Chu J. Energy Environ Sci, 2023, 16: 2327–2337

    Article  CAS  Google Scholar 

  13. Ge Z, Qiao J, Li Y, Song J, Zhang C, Fu Z, Jee MH, Hao X, Woo HY, Sun Y. Adv Mater, 2023, 35: 2301906

    Article  CAS  Google Scholar 

  14. Guo J, Xia X, Qiu B, Zhang J, Qin S, Li X, Lai W, Lu X, Meng L, Zhang Z, Li Y. Adv Mater, 2023, 35: 2211296

    Article  CAS  Google Scholar 

  15. Ma L, Cui Y, Zhang J, Xian K, Chen Z, Zhou K, Zhang T, Wang W, Yao H, Zhang S, Hao X, Ye L, Hou J. Adv Mater, 2023, 35: 2208926

    Article  CAS  Google Scholar 

  16. Sun R, Wang T, Fan Q, Wu M, Yang X, Wu X, Yu Y, Xia X, Cui F, Wan J, Lu X, Hao X, Jen AKY, Spiecker E, Min J. Joule, 2023, 7: 221–237

    Article  CAS  Google Scholar 

  17. Ma R, Li H, Peña TAD, Xie X, Fong PW, Wei Q, Yan C, Wu J, Cheng P, Li M, Li G. Adv Mater, 2023, n/a: 2304632

  18. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  19. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6: 605–613

    Article  CAS  Google Scholar 

  20. Kong X, Zhang J, Meng L, Sun C, Qin S, Zhu C, Zhang J, Li J, Wei Z, Li Y. CCS Chem, 2023, 5: 841–850

    Article  CAS  Google Scholar 

  21. Du J, Hu K, Zhang J, Meng L, Yue J, Angunawela I, Yan H, Qin S, Kong X, Zhang Z, Guan B, Ade H, Li Y. Nat Commun, 2021, 12: 5264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun H, Liu B, Ma Y, Lee J, Yang J, Wang J, Li Y, Li B, Feng K, Shi Y, Zhang B, Han D, Meng H, Niu L, Kim BJ, Zheng Q, Guo X. Adv Mater, 2021, 33: 2102635

    Article  CAS  Google Scholar 

  23. Fu H, Fan Q, Gao W, Oh J, Li Y, Lin F, Qi F, Yang C, Marks TJ, Jen AKY. Sci China Chem, 2022, 65: 309–317

    Article  CAS  Google Scholar 

  24. Zhou D, Liao C, Peng S, Xu X, Guo Y, Xia J, Meng H, Yu L, Li R, Peng Q. Adv Sci, 2022, 9: 2202022

    Article  CAS  Google Scholar 

  25. Wan J, Dyadishchev I, Sun R, Wu Q, Wu Y, Zhang M, Peregudova S, Ponomarenko S, Luponosov Y, Min J. J Mater Chem A, 2022, 10: 17122–17131

    Article  CAS  Google Scholar 

  26. Jia Z, Ma Q, Meng L, Zhang J, Qin S, Chen Z, Li X, Zhang J, Li J, Zhang Z, Wei Z, Yang YM, Li Y. Adv Funct Mater, 2022, 32: 2204720

    Article  CAS  Google Scholar 

  27. Bi P, Zhang S, Ren J, Chen Z, Zheng Z, Cui Y, Wang J, Wang S, Zhang T, Li J, Xu Y, Qin J, An C, Ma W, Hao X, Hou J. Adv Mater, 2022, 34: 2108090

    Article  CAS  Google Scholar 

  28. Wang J, Cui Y, Chen Z, Zhang J, Xiao Y, Zhang T, Wang W, Xu Y, Yang N, Yao H, Hao XT, Wei Z, Hou J. J Am Chem Soc, 2023, 145: 13686–13695

    Article  CAS  PubMed  Google Scholar 

  29. Firdaus Y, He Q, Lin Y, Nugroho FAA, Le Corre VM, Yengel E, Balawi AH, Seitkhan A, Laquai F, Langhammer C, Liu F, Heeney M, Anthopoulos TD. J Mater Chem A, 2020, 8: 1164–1175

    Article  CAS  Google Scholar 

  30. Liu Q, Jin K, Li W, Xiao Z, Cheng M, Yuan Y, Shi S, Jin Z, Hao F, Yang S, Ding L. J Mater Chem A, 2020, 8: 8857–8861

    Article  CAS  Google Scholar 

  31. Jia Z, Ma Q, Chen Z, Meng L, Jain N, Angunawela I, Qin S, Kong X, Li X, Yang Y, Zhu H, Ade H, Gao F, Li Y. Nat Commun, 2023, 14: 1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cui Y, Hong L, Hou J. ACS Appl Mater Interfaces, 2020, 12: 38815–38828

    Article  CAS  PubMed  Google Scholar 

  33. Ryu HS, Park SY, Lee TH, Kim JY, Woo HY. Nanoscale, 2020, 12: 5792–5804

    Article  CAS  PubMed  Google Scholar 

  34. Murugan P, Hu T, Hu X, Chen Y. J Mater Chem A, 2022, 10: 17968–17987

    Article  CAS  Google Scholar 

  35. Meng D, Zheng R, Zhao Y, Zhang E, Dou L, Yang Y. Adv Mater, 2022, 34: 2107330

    Article  CAS  Google Scholar 

  36. Wu Q, Wang W, Wu Y, Sun R, Guo J, Shi M, Min J. Natl Sci Rev, 2022, 9: nwab151

    Article  CAS  PubMed  Google Scholar 

  37. Yu H, Wang Y, Kim HK, Wu X, Li Y, Yao Z, Pan M, Zou X, Zhang J, Chen S, Zhao D, Huang F, Lu X, Zhu Z, Yan H. Adv Mater, 2022, 34: 2200361

    Article  CAS  Google Scholar 

  38. Kim HK, Yu H, Pan M, Shi X, Zhao H, Qi Z, Liu W, Ma W, Yan H, Chen S. Adv Sci, 2022, 9: 2202223

    Article  CAS  Google Scholar 

  39. Li X, Luo S, Sun H, Sung HHY, Yu H, Liu T, Xiao Y, Bai F, Pan M, Lu X, Williams ID, Guo X, Li Y, Yan H. Energy Environ Sci, 2021, 14: 4555–4563

    Article  CAS  Google Scholar 

  40. Chen Y, Bai F, Peng Z, Zhu L, Zhang J, Zou X, Qin Y, Kim HK, Yuan J, Ma L, Zhang J, Yu H, Chow PCY, Huang F, Zou Y, Ade H, Liu F, Yan H. Adv Energy Mater, 2021, 11: 2003141

    Article  CAS  Google Scholar 

  41. Wei Q, Liang S, Liu W, Hu Y, Qiu B, Ren J, Yuan J, Huang F, Zou Y, Li Y. ACS Energy Lett, 2022, 7: 2373–2381

    Article  CAS  Google Scholar 

  42. Liang Y, Zhang D, Wu Z, Jia T, Lüer L, Tang H, Hong L, Zhang J, Zhang K, Brabec CJ, Li N, Huang F. Nat Energy, 2022, 7: 1180–1190

    Article  CAS  Google Scholar 

  43. Liu W, Liu Q, Xiang C, Zhou H, Jiang L, Zou Y. Surfs Interfaces, 2021, 26: 101385

    Article  CAS  Google Scholar 

  44. Xu Y, Wang J, Yao H, Bi P, Zhang T, Xu J, Hou J. Chin J Chem, 2023, 41: 1045–1050

    Article  CAS  Google Scholar 

  45. Li X, Li Y. Acta Polym Sin, 2022, 53: 995–1004

    CAS  Google Scholar 

  46. Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33: 2102420

    Article  CAS  Google Scholar 

  47. Ma R, Tao Y, Chen Y, Liu T, Luo Z, Guo Y, Xiao Y, Fang J, Zhang G, Li X, Guo X, Yi Y, Zhang M, Lu X, Li Y, Yan H. Sci China Chem, 2021, 64: 581–589

    Article  CAS  Google Scholar 

  48. Gao M, Liang Z, Geng Y, Ye L. Chem Commun, 2020, 56: 12463–12478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFA0705900), the Ministry of Science and Technology, the National Natural Science Foundation of China (51820105003, 21734008, 52203248, 61904181, 52173188), the Key Research Program of the Chinese Academy of Sciences (XDPB13) and the Basic and Applied Basic Research Major Program of Guangdong Province (2019B030302007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Li, Lei Meng or Yongfang Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2023_1773_MOESM1_ESM.pdf

Introducing alkoxy groups as outer side chains and substituents of π-bridges obtains high-performance medium-bandgap polymerized small molecule acceptors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Zou, T., Li, X. et al. Introducing alkoxy groups as outer side chains and substituents of π-bridges obtains high-performance medium-bandgap polymerized small molecule acceptors. Sci. China Chem. 66, 2912–2920 (2023). https://doi.org/10.1007/s11426-023-1773-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1773-0

Navigation