Skip to main content
Log in

C2-phenyl-substituted benzimidazolium-based covalent organic framework as efficient catalyst for CO2 conversion without solvents, metals, and cocatalysts

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) are a potential platform for carbon dioxide (CO2) conversion owing to their periodic permanent porosity, adjustable structure, and chemical stability. For good catalytic performance in CO2 conversion, collaborative multifunctions should be strategically integrated into the catalytic system design and construction. In this study, a four-in-one high-efficiency catalyst was synthesized and tested for CO2 cycloaddition to form cyclic carbonate. The obtained Tp-MPB-Br-COF had a high nitrogen content, which enhanced its CO2 affinity through substantial Lewis acid-base or dipole-quadrupole interactions; moreover, the acid (protons transferring from oxygen (–OH) to nitrogen (–NH)), hydrogen bond donor (hydroxyl group), and Br (nucleophile group) served as three active sites, further improving the catalyst activity. These results provide a basis for designing efficient and stable CO2-conversion catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luderer G, Vrontisi Z, Bertram C, Edelenbosch OY, Pietzcker RC, Rogelj J, De Boer HS, Drouet L, Emmerling J, Fricko O, Fujimori S, Havlík P, Iyer G, Keramidas K, Kitous A, Pehl M, Krey V, Riahi K, Saveyn B, Tavoni M, Van Vuuren DP, Kriegler E. Nat Clim Change, 2018, 8: 626–633

    Article  ADS  CAS  Google Scholar 

  2. Al-Mamoori A, Krishnamurthy A, Rownaghi AA, Rezaei F. Energy Technol, 2017, 5: 834–849

    Article  Google Scholar 

  3. Matthews HD, Gillett NP, Stott PA, Zickfeld K. Nature, 2009, 459: 829–832

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Zhang Q, Yang C, Guan A, Kan M, Zheng G. Nanoscale, 2022, 14: 10268–10285

    Article  PubMed  CAS  Google Scholar 

  5. Hui W, Xu XY, Mao FF, Shi L, Wang HJ. Sustain Energy Fuels, 2022, 6: 3208–3219

    Article  CAS  Google Scholar 

  6. Yao Q, Shi Y, Wang Y, Zhu X, Yuan D, Yao Y. Asian J Org Chem, 2022, 11: e202200106

    Article  CAS  Google Scholar 

  7. Saptal VB, Bhanage BM. Curr Opin Green Sustain Chem, 2017, 3: 1–10

    Article  Google Scholar 

  8. Zhao Y, Huang H, Zhu H, Zhong C. Microporous Mesoporous Mater, 2022, 329: 111526

    Article  CAS  Google Scholar 

  9. Zhang Y, Lan X, Yan F, He X, Wang J, Ricardez-Sandoval L, Chen L, Bai G. Green Chem, 2022, 24: 930–940

    Article  CAS  Google Scholar 

  10. Wu J, Ma S, Cui J, Yang Z, Zhang J. Nanomaterials, 2022, 12: 3088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hao Y, Yan X, Chang T, Liu X, Kang L, Zhu Z, Panchal B, Qin S. Sustain Energy Fuels, 2022, 6: 121–127

    Article  CAS  Google Scholar 

  12. Du YR, Yang X, Wang YF, Guan PX, Wang R, Xu BH. Mol Catal, 2022, 520: 112164

    Article  CAS  Google Scholar 

  13. Liang S, Liu H, Jiang T, Song J, Yang G, Han B. Chem Commun, 2011, 47: 2131–2133

    Article  CAS  Google Scholar 

  14. Ema T, Miyazaki Y, Shimonishi J, Maeda C, Hasegawa J. J Am Chem Soc, 2014, 136: 15270–15279

    Article  PubMed  CAS  Google Scholar 

  15. North M, Pasquale R. Angew Chem Int Ed, 2008, 48: 2946–2948

    Article  Google Scholar 

  16. Dai WL, Yin SF, Guo R, Luo SL, Du X, Au CT. Catal Lett, 2010, 136: 35–44

    Article  CAS  Google Scholar 

  17. Cao JP, Xue YS, Li NF, Gong JJ, Kang RK, Xu Y. J Am Chem Soc, 2019, 141: 19487–19497

    Article  PubMed  CAS  Google Scholar 

  18. Caló V, Nacci A, Monopoli A, Fanizzi A. Org Lett, 2002, 4: 2561–2563

    Article  PubMed  Google Scholar 

  19. Chen Y, Mu T. Green Chem, 2019, 21: 2544–2574

    Article  ADS  CAS  Google Scholar 

  20. Roshan KR, Palissery RA, Kathalikkattil AC, Babu R, Mathai G, Lee HS, Park DW. Catal Sci Technol, 2016, 6: 3997–4004

    Article  CAS  Google Scholar 

  21. Sun J, Cheng W, Yang Z, Wang J, Xu T, Xin J, Zhang S. Green Chem, 2014, 16: 3071–3078

    Article  CAS  Google Scholar 

  22. Du Y, Yang H, Whiteley JM, Wan S, Jin Y, Lee S-, Zhang W. Angew Chem Int Ed, 2016, 55: 1737–1741

    Article  CAS  Google Scholar 

  23. Baldwin LA, Crowe JW, Pyles DA, McGrier PL. J Am Chem Soc, 2016, 138: 15134–15137

    Article  PubMed  CAS  Google Scholar 

  24. Pramudya Y, Mendoza-Cortes JL. J Am Chem Soc, 2016, 138: 15204–15213

    Article  PubMed  CAS  Google Scholar 

  25. Huang N, Krishna R, Jiang D. J Am Chem Soc, 2015, 137: 7079–7082

    Article  PubMed  CAS  Google Scholar 

  26. Lin S, Diercks CS, Zhang YB, Kornienko N, Nichols EM, Zhao Y, Paris AR, Kim D, Yang P, Yaghi OM, Chang CJ. Science, 2015, 349: 1208–1213

    Article  PubMed  ADS  CAS  Google Scholar 

  27. Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W. J Am Chem Soc, 2011, 133: 19816–19822

    Article  PubMed  CAS  Google Scholar 

  28. Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV. Nat Commun, 2015, 6: 8508

    Article  PubMed  ADS  CAS  Google Scholar 

  29. Sun Q, Aguila B, Perman J, Nguyen N, Ma S. J Am Chem Soc, 2016, 138: 15790–15796

    Article  PubMed  CAS  Google Scholar 

  30. Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J Am Chem Soc, 2016, 138: 12332–12335

    Article  PubMed  CAS  Google Scholar 

  31. Sun Q, Tang Y, Aguila B, Wang S, Xiao F-, Thallapally PK, Al-Enizi AM, Nafady A, Ma S. Angew Chem Int Ed, 2019, 58: 8670–8675

    Article  CAS  Google Scholar 

  32. Bhadra M, Kandambeth S, Sahoo MK, Addicoat M, Balaraman E, Banerjee R. J Am Chem Soc, 2019, 141: 6152–6156

    Article  PubMed  CAS  Google Scholar 

  33. Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D. Chem Rev, 2020, 120: 8814–8933

    Article  PubMed  CAS  Google Scholar 

  34. Diercks C, Kalmutzki M, Yaghi O. Molecules, 2017, 22: 1575

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Chem Soc Rev, 2021, 50: 120–242

    Article  PubMed  CAS  Google Scholar 

  36. Lohse MS, Bein T. Adv Funct Mater, 2018, 28: 1705553

    Article  Google Scholar 

  37. Liang RR, Jiang SY, A RH, Zhao X. Chem Soc Rev, 2020, 49: 3920–3951

    Article  PubMed  CAS  Google Scholar 

  38. Li J, Wang J, Wu Z, Tao S, Jiang D. Angew Chem Int Ed, 2021, 60: 12918–12923

    Article  CAS  Google Scholar 

  39. Wu Z, He Y, Liu L, Wang J, Xu Q, Zhang XM, Li J. ACS Appl Mater Interfaces, 2022, 14: 43861–43867

    Article  PubMed  CAS  Google Scholar 

  40. Yang X, Jin Y, Yu B, Gong L, Liu W, Liu X, Chen X, Wang K, Jiang J. Sci China Chem, 2022, 65: 1291–1298

    Article  CAS  Google Scholar 

  41. Liu H, Yan X, Chen W, Xie Z, Li S, Chen W, Zhang T, Xing G, Chen L. Sci China Chem, 2021, 64: 827–833

    Article  CAS  Google Scholar 

  42. Wu Z, Huang X, Li X, Hai G, Li B, Wang G. Sci China Chem, 2021, 64: 1964–1969

    Article  Google Scholar 

  43. Tong Y, Cheng R, Dong H, Liu B. J Porous Mater, 2022, 29: 1253–1263

    Article  CAS  Google Scholar 

  44. Zhang Y, Yang DH, Qiao S, Han BH. Langmuir, 2021, 37: 10330–10339

    Article  PubMed  CAS  Google Scholar 

  45. Li Y, Zhang J, Zuo K, Li Z, Wang Y, Hu H, Zeng C, Xu H, Wang B, Gao Y. Catalysts, 2021, 11: 1133

    Article  Google Scholar 

  46. Li Y, Song X, Zhang G, Chen W, Wang L, Liu Y, Chen L. Sci China Mater, 2021, 65: 1377–1382

    Article  Google Scholar 

  47. Peng J, Deng Y. New J Chem, 2001, 25: 639–641

    Article  CAS  Google Scholar 

  48. Su Q, Qi Y, Yao X, Cheng W, Dong L, Chen S, Zhang S. Green Chem, 2018, 20: 3232–3241

    Article  CAS  Google Scholar 

  49. Cui C, Sa R, Hong Z, Zhong H, Wang R. ChemSusChem, 2020, 13: 180–187

    Article  PubMed  CAS  Google Scholar 

  50. Ding LG, Yao BJ, Jiang WL, Li JT, Fu QJ, Li YA, Liu ZH, Ma JP, Dong YB. Inorg Chem, 2017, 56: 2337–2344

    Article  PubMed  CAS  Google Scholar 

  51. Yan Q, Liang H, Wang S, Hu H, Su X, Xiao S, Xu H, Jing X, Lu F, Gao Y. Molecules, 2022, 27: 6204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Du YR, Ding GR, Wang YF, Xu BH, Zhang SJ. Green Chem, 2021, 23: 2411–2419

    Article  CAS  Google Scholar 

  53. Luo R, Liu X, Chen M, Liu B, Fang Y. ChemSusChem, 2022, 13: 3945–3966

    Article  Google Scholar 

  54. Yang Y, Chen K, Liu X, Chen M, Xu W, Liu B, Ji H, Fang Y. J Mater Chem A, 2021, 9: 20941–20956

    Article  Google Scholar 

  55. Wang KY, Yang Q, Chung TS, Rajagopalan R. Chem Eng Sci, 2009, 64: 1577–1584

    Article  CAS  Google Scholar 

  56. Thomas OD, Soo KJWY, Peckham TJ, Kulkarni MP, Holdcroft S. J Am Chem Soc, 2012, 134: 10753–10756

    Article  PubMed  CAS  Google Scholar 

  57. He C, Si D, Huang Y, Cao R. Angew Chem Int Ed, 2022, 61: e202207478

    Article  ADS  CAS  Google Scholar 

  58. Kang DW, Kang M, Yun H, Park H, Hong CS. Adv Funct Mater, 2021, 31: 2100083

    Article  CAS  Google Scholar 

  59. Lin X, Varcoe JR, Poynton SD, Liang X, Ong AL, Ran J, Li Y, Xu T. J Mater Chem A, 2013, 1: 7262–7269

    Article  CAS  Google Scholar 

  60. Ito E, Oji H, Araki T, Oichi K, Ishii H, Ouchi Y, Ohta T, Kosugi N, Maruyama Y, Naito T, Inabe T, Seki K. J Am Chem Soc, 1997, 119: 6336–6344

    Article  CAS  Google Scholar 

  61. Liu TT, Xu R, Yi JD, Liang J, Wang XS, Shi PC, Huang YB, Cao R. ChemCatChem, 2018, 10: 2036–2040

    Article  CAS  Google Scholar 

  62. Huang K, Zhang JY, Liu F, Dai S. ACS Catal, 2018, 8: 9079–9102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21805173, 52273208), Shanxi Agricultural University (SXBYKY2022078, 2021BQ120), Shanxi Scholarship Council of China (2022-004), and the Natural Science Foundation of Shanxi Province (202203021211289).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shang Guo, Juan Li or Xianming Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Information (ESI)

11426_2023_1754_MOESM1_ESM.pdf

C2-Phenyl-Substituted-Benzimidazolium-Based Covalent Organic Framework as Efficient Catalyst for CO2 Conversion without Solvents, Metals, and Cocatalysts

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wang, J., Liu, L. et al. C2-phenyl-substituted benzimidazolium-based covalent organic framework as efficient catalyst for CO2 conversion without solvents, metals, and cocatalysts. Sci. China Chem. 67, 551–557 (2024). https://doi.org/10.1007/s11426-023-1754-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1754-5

Navigation