Skip to main content
Log in

Palladium-catalyzed allylic alkylation enabled by ketone umpolung via Pudovik addition/[1,2]-phospha-Brook rearrangement

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Palladium-catalyzed allylic alkylation enabled by ketone umpolung via Pudovik addition/[1,2]-phospha-Brook rearrangement with phosphites has been developed. The protocol offers a straightforward method for the synthesis of potentially bioactive homoallylic alcohol phosphonates in an efficient and economical way. This cascade reaction proceeds under mild conditions with excellent functional group compatibility. Furthermore, the catalytic asymmetric version has also been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang MM, Qu BL, Shi B, Xiao WJ, Lu LQ. Chem Soc Rev, 2022, 51: 4146–4174

    Article  CAS  PubMed  Google Scholar 

  2. Cera G, Maestri G. ChemCatChem, 2022, 14: e202200295

    Article  CAS  Google Scholar 

  3. Mohammadkhani L, Heravi MM. Chem Rec, 2021, 21: 29–68

    Article  CAS  PubMed  Google Scholar 

  4. Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericas MA, Diéguez M. Chem Rev, 2021, 121: 43 73–45 05

    Article  Google Scholar 

  5. Cheng Q, Tu HF, Zheng C, Qu JP, Helmchen G, You SL. Chem Rev, 2019, 119: 1855–1969

    Article  CAS  PubMed  Google Scholar 

  6. Tang H, Huo X, Meng Q, Zhang W. Acta Chim Sin, 2016, 74: 219–233

    Article  CAS  Google Scholar 

  7. Butt NA, Zhang W. Chem Soc Rev, 2015, 44: 7929–7967

    Article  CAS  PubMed  Google Scholar 

  8. Trost BM. Tetrahedron, 2015, 71: 5708–5733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dai XJ, Li CC, Li CJ. Chem Soc Rev, 2021, 50: 10733–10742

    Article  CAS  PubMed  Google Scholar 

  10. Wang S, König B. Angew Chem Int Ed, 2021, 60: 21624–21634

    Article  CAS  Google Scholar 

  11. Chen XY, Gao ZH, Ye S. Acc Chem Res, 2020, 53: 690–702

    Article  CAS  PubMed  Google Scholar 

  12. Song X, Zhang J, Wu YX, Ouyang Q, Du W, Chen YC. J Am Chem Soc, 2022, 144: 9564–9569

    Article  CAS  PubMed  Google Scholar 

  13. Huang S, Zhang GP, Jiang YJ, Yu FL, Ding CH, Hou XL. Chem Commun, 2022, 58: 3513–3516

    Article  CAS  Google Scholar 

  14. Wang TC, Zhu L, Luo S, Nong ZS, Wang PS, Gong LZ. J Am Chem Soc, 2021, 143: 20454–20461

    Article  CAS  PubMed  Google Scholar 

  15. Huang S, Tong FF, Bai DC, Zhang GP, Jiang YJ, Zhang B, Leng X, Guo YL, Wan XL, Zhang X, Ding CH, Hou XL. Nat Commun, 2021, 12: 6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen C, Wang RQ, Wei L, Wang ZF, Tao HY, Wang CJ. Org Lett, 2019, 21: 6940–6945

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Cao CG, Sun HB, Zhang X, Niu D. J Am Chem Soc, 2016, 138: 13103–13106

    Article  CAS  PubMed  Google Scholar 

  18. Wu Y, Hu L, Li Z, Deng L. Nature, 2015, 523: 445–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yasuda S, Ishii T, Takemoto S, Haruki H, Ohmiya H. Angew Chem Int Ed, 2018, 57: 2938–2942

    Article  CAS  Google Scholar 

  20. Haruki H, Yasuda S, Nagao K, Ohmiya H. Chem Eur J, 2019, 25: 724–727

    Article  CAS  PubMed  Google Scholar 

  21. Bai Y, Xiang S, Leow ML, Liu XW. Chem Commun, 2014, 50: 6168–6170

    Article  CAS  Google Scholar 

  22. Bai Y, Leng WL, Li Y, Liu XW. Chem Commun, 2014, 50: 13391–13393

    Article  CAS  Google Scholar 

  23. Liu H, Han YF, Gao ZH, Zhang CL, Wang C, Ye S. ACS Catal, 2022, 12: 1657–1663

    Article  CAS  Google Scholar 

  24. Ueda Y, Masuda Y, Iwai T, Imaeda K, Takeuchi H, Ueno K, Gao M, Hasegawa J, Sawamura M. J Am Chem Soc, 2022, 144: 2218–2224

    Article  CAS  PubMed  Google Scholar 

  25. Yabushita K, Yuasa A, Nagao K, Ohmiya H. J Am Chem Soc, 2019, 141: 113–117

    Article  CAS  PubMed  Google Scholar 

  26. Tietze LF, Kinzel T, Brazel CC. Acc Chem Res, 2009, 42: 367–378

    Article  CAS  PubMed  Google Scholar 

  27. Wang PS, Shen ML, Gong LZ. Synthesis, 2018, 50: 956–967

    Article  CAS  Google Scholar 

  28. Yus M, González-Gómez JC, Foubelo F. Chem Rev, 2013, 113: 5595–5698

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Li Y, Miao Z. Daxue Huaxue, 2020, 0: 1–0

    Google Scholar 

  30. Kondoh A, Terada M. Asian J Org Chem, 2023, 12: e202300003

    Article  CAS  Google Scholar 

  31. Kondoh A, Ozawa R, Terada M. Chem Lett, 2019, 48: 1164–1167

    Article  CAS  Google Scholar 

  32. Kondoh A, Aita K, Ishikawa S, Terada M. Org Lett, 2020, 22: 2105–2110

    Article  CAS  PubMed  Google Scholar 

  33. Kondoh A, Ojima R, Terada M. Org Lett, 2021, 23: 7894–7899

    Article  CAS  PubMed  Google Scholar 

  34. Corbett MT, Uraguchi D, Ooi T, Johnson JS. Angew Chem Int Ed, 2012, 51: 4685–4689

    Article  CAS  Google Scholar 

  35. Horwitz MA, Zavesky BP, Martinez-Alvarado JI, Johnson JS. Org Lett, 2016, 18: 36–39

    Article  CAS  PubMed  Google Scholar 

  36. Horwitz MA, Tanaka N, Yokosaka T, Uraguchi D, Johnson JS, Ooi T. Chem Sci, 2015, 6: 6086–6090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin Q, Zheng S, Chen L, Wu J, Li J, Liu P, Dong S, Liu X, Peng Q, Feng X. Angew Chem Int Ed, 2022, 61: e202203650

    Article  CAS  Google Scholar 

  38. Tan Q, Guo N, Yang L, Wang F, Feng X, Liu X. J Org Chem, 2023, 88: 9332–9342

    Article  CAS  PubMed  Google Scholar 

  39. Cheibas C, Fincias N, Casaretto N, Garrec J, El Kaïm L. Angew Chem IntEd, 2022, 61: e202116249

    Article  CAS  Google Scholar 

  40. Ali A, Jajoria R, Harit HK, Singh RP. J Org Chem, 2022, 87: 5213–5228

    Article  CAS  PubMed  Google Scholar 

  41. Kaur R, Singh D, Singh RP. J Org Chem, 2021, 86: 15702–15711

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Gao Y, Liu Y, Miao Z. J Org Chem, 2021, 86: 8630–8640

    Article  CAS  PubMed  Google Scholar 

  43. Jiang J, Liu H, Lu CD, Xu YJ. Org Lett, 2016, 18: 880–883

    Article  CAS  PubMed  Google Scholar 

  44. Montchamp JL. Phosphorus Chemistry I: Asymmetric Synthesis and Bioactive Compounds. Cham: Springer, 2015

    Book  Google Scholar 

  45. Montchamp JL. Phosphorus Chemistry II: Synthetic Methods. Cham: Springer, 2015

    Book  Google Scholar 

  46. Corbridge DEC. Phosphorus Chemistry, Biochemistry and Technology. Sixth Edition. New York: Taylor & Francis Group, 2013

    Google Scholar 

  47. Zhao D, Wang R. Chem Soc Rev, 2012, 41: 2095–2108

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Liu W, Zhao X. Eur J Org Chem, 2014, 2014: 6846–6849

    Article  CAS  Google Scholar 

  49. Zhu J, Huang L, Dong W, Li N, Yu X, Deng WP, Tang W. Angew Chem IntEd, 2019, 58: 16119–16123

    Article  CAS  Google Scholar 

  50. Trost BM, Zhang T, Sieber JD. Chem Sci, 2010, 1: 427–440

    Article  CAS  Google Scholar 

  51. Trost BM, van Vranken DL. Chem Rev, 1996, 96: 395–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA0804900), the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (2022R01007), and Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quannan Wang or Wei-Ping Deng.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11426_2023_1744_MOESM1_ESM.pdf

Palladium-catalyzed allylic alkylation enabled by ketone umpolung via Pudovik addition/[1,2]-phospha-Brook rearrangement

checkCIF/PLATON report

Supplementary material, approximately 560 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Su, JY., Liu, YZ. et al. Palladium-catalyzed allylic alkylation enabled by ketone umpolung via Pudovik addition/[1,2]-phospha-Brook rearrangement. Sci. China Chem. 66, 2810–2816 (2023). https://doi.org/10.1007/s11426-023-1744-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1744-2

Navigation