Skip to main content
Log in

Heterogeneous catalytic dehydrogenative coupling of ethylene glycol and primary alcohols into α-hydroxycarboxylic acids

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Lactic acid and other α-hydroxycarboxylic acids (α-HCAs) play crucial roles in various applications. Synthesizing α-HCAs from biomass platform feedstocks such as ethylene glycol (EG) and primary alcohols is novel and attractive. It was reported that the dehydrogenative cross-coupling of EG and primary alcohols can be achieved via homogeneous catalysis. Herein, we report a heterogeneous catalytic strategy to produce a series of α-HCAs through the same reaction pathway. Impressive catalytic activity and selectivity were achieved using various metals (Ru, Ir, Pt and Pd) supported on the nanodiamond-graphene (ND@G), with Ru exhibiting the best performance. This universally applicable process enables the easy synthesis of gram-scale α-HCAs, providing a straightforward and compelling C-C bond cross-coupling strategy for the utilization of alcohols derived from biomass feedstocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alamillo R, Crisci AJ, Gallo JMR, Scott SL, Dumesic JA. Angew ChemlntEd, 2013, 52: 10349–10351

    Article  CAS  Google Scholar 

  2. Wang Y, Peng M, Zhang J, Zhang Z, An J, Du S, An H, Fan F, Liu X, Zhai P, Ma D, Wang F. Nat Commun, 2018, 9: 5183

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shimizu K, Hayashi E, Hatamachi T, Kodama T, Higuchi T, Satsuma A, Kitayama Y. J Catal, 2005, 231: 131–138

    Article  CAS  Google Scholar 

  4. Tian S, Jiao Y, Gao Z, Xu Y, Fu L, Fu H, Zhou W, Hu C, Liu G, Wang M, Ma D. J Am Chem Soc, 2021, 143: 16358–16363

    Article  CAS  PubMed  Google Scholar 

  5. Kornhauser A. CCID, 2010, 3: 135–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Altman R. Science, 2021, 373: 47–49

    Article  CAS  PubMed  Google Scholar 

  7. Waiba S, Maji K, Maiti M, Maji B. Angew Chem Int Ed, 2023, 62: e202218329

    Article  CAS  Google Scholar 

  8. Wu J, Shen L, Chen ZN, Zheng Q, Xu X, Tu T. Angew Chem Int Ed, 2020, 59: 10421–10425

    Article  CAS  Google Scholar 

  9. Lee M, Byeon H, Jang HY. J Org Chem, 2022, 87: 4631–4639

    Article  CAS  PubMed  Google Scholar 

  10. Waiba S, Maiti M, Maji B. ACS Catal, 2022, 12: 3995–4001

    Article  CAS  Google Scholar 

  11. Sharninghausen LS, Campos J, Manas MG, Crabtree RH. Nat Commun, 2014, 5: 5084

    Article  CAS  PubMed  Google Scholar 

  12. Li L, Shen F, Smith RL, Qi X. Green Chem, 2017, 19: 76–81

    Article  CAS  Google Scholar 

  13. Liu Y, Wang Z, Guo N, Liu P, Liu G, Gao J, Zhang L, Jiang Y. Chin J Chem, 2021, 39: 1975–1982

    Article  CAS  Google Scholar 

  14. Gao J, Feng L, Ma R, Su BJ, Alenad AM, Liu Y, Beller M, Jagadeesh RV. Chem Catal, 2022, 2: 178–194

    Article  CAS  Google Scholar 

  15. Jagadeesh RV, Murugesan K, Alshammari AS, Neumann H, Pohl MM, Radnik J, Beller M. Science, 2017, 358: 326–332

    Article  CAS  PubMed  Google Scholar 

  16. Dong C, Gao Z, Li Y, Peng M, Wang M, Xu Y, Li C, Xu M, Deng Y, Qin X, Huang F, Wei X, Wang YG, Liu H, Zhou W, Ma D. Nat Catal, 2022, 5: 485–493

    Article  CAS  Google Scholar 

  17. http://www.baiinfo.com/guizhongjinshu/gold, accessed on 2023-06-13

  18. Heim LE, Schlörer NE, Choi JH, Prechtl MHG. Nat Commun, 2014, 5: 3621

    Article  PubMed  Google Scholar 

  19. Huang F, Peng M, Liu H, Ma D. Acc Mater Res, 2023, 4: 223–236

    Article  CAS  Google Scholar 

  20. Atsumi S, Hanai T, Liao JC. Nature, 2008, 451: 86–89

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received financial support from the National Key R&D Program of China (2022YFA1504800), the Natural Science Foundation of China (22005007, 21725301, 22232001), China National Petroleum Corporation-Peking University Strategic Cooperation Project of Fundamental Research, and the New Cornerstone Science Foundation. W.Z. acknowledges support from the Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039). D. M. acknowledges support from the Tencent Foundation through the XPLORER PRIZE. The XAFS was conducted at Beijing Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Wang or Ding Ma.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Li, J., Peng, X. et al. Heterogeneous catalytic dehydrogenative coupling of ethylene glycol and primary alcohols into α-hydroxycarboxylic acids. Sci. China Chem. 66, 2583–2589 (2023). https://doi.org/10.1007/s11426-023-1734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1734-x

Keywords

Navigation