Skip to main content
Log in

Boosting thermal stability and crystallization of closed-loop-recyclable biodegradable poly(p-dioxanone) by end-group regulation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A chemically closed-loop-recyclable biodegradable polymer, poly(p-dioxanone) (PPDO), is one of the ideal candidates for single-use plastic products due to its suitability for different application scenarios. Fascinatingly, when PPDO wastes can be collected, its monomer p-dioxanone (PDO) will be obtained through chemical recycling of these wastes; when cannot be collected, the wastes are able to be biodegraded into harmless substances. However, unsatisfied thermal stability and low crystallization rate of PPDO restrict its wider applications. Herein, based on end-group regulation, we simultaneously realized the significant enhancement of thermal stability and crystallization of PPDO through the simple melt processing with tributyl phosphite (TBP) or triphenyl phosphite (TPP). The model reactions were conducted to investigate the reaction mechanism and theoretical products during the preparation of PPDO/phosphite compounds. Two kinds of phosphites were proved to act as the end-capped reagent and chain extender in the melt processing, while TBP presented better reactivity. As a result, the activation energy of thermal decomposition was largely elevated, and the unprecedented T5% (the temperature at a weight loss of 5%) and Tmax (the temperature at a maximum rate of weight loss) of PPDO were obtained, i.e., T5% of ~330 °C and Tmax of ~385 °C in N2 atmosphere, T5% of ~240 °C and Tmax of ~317 °C in air atmosphere, respectively. Furthermore, the increased crystallization rate, crystallinity, crystalline orderliness, and realizable monomer recovery (yield >90%, purity >99.9%) of PPDO/phosphite compounds were confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGi-vern A, Murphy E, Jambeck J, Leonard GH, Hilleary MA, Eriksen M, Possingham HP, De Frond H, Gerber LR, Polidoro B, Tahir A, Bernard M, Mallos N, Barnes M, Rochman CM. Science, 2020, 369: 1515–1518

    Article  PubMed  ADS  CAS  Google Scholar 

  2. Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK, Rios-Mendoza LM, Takada H, Teh S, Thompson RC. Nature, 2013, 494: 169–171

    Article  PubMed  ADS  CAS  Google Scholar 

  3. Rochman CM. Science, 2018, 360: 28–29

    Article  PubMed  ADS  CAS  Google Scholar 

  4. Huang W, Song B, Liang J, Niu Q, Zeng G, Shen M, Deng J, Luo Y, Wen X, Zhang Y. J Hazard Mater, 2021, 405: 124187

    Article  PubMed  CAS  Google Scholar 

  5. Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Environ Int, 2022, 163: 107199

    Article  PubMed  CAS  Google Scholar 

  6. Yang KK, Wang XL, Wang YZ. J Macromol Sci Part C-Polym Rev, 2002, 42: 373–398

    Article  Google Scholar 

  7. Im JN, Kim JK, Kim HK, In CH, Lee KY, Park WH. Polym Degrad Stab, 2007, 92: 667–674

    Article  CAS  Google Scholar 

  8. Andjeli S, Jamiolkowski D, McDivitt J, Fischer J, Zhou J, Vetrecin R. J Appl Polym Sci, 2001, 79: 742–759

    Article  Google Scholar 

  9. Zhao F, Xue W, Wang F, Yu C, Xu H, Hao Y, Wang L. J Mech Behav Biomed Mater, 2017, 68: 318–326

    Article  PubMed  CAS  Google Scholar 

  10. Bagheri AR, Laforsch C, Greiner A, Agarwal S. Glob Challenges, 2017, 1: 1700048

    Article  Google Scholar 

  11. Sabino MA, Albuerne J, Müller AJ, Brisson J, Prud’homme RE. Biomacromolecules, 2004, 5: 358–370

    Article  PubMed  CAS  Google Scholar 

  12. Yang KK, Wang YZ. Mater China, 2011, 30: 25–34

    Google Scholar 

  13. Xiong WT, Wu G, Chen SC, Wang YZ. Sci China Chem, 2023, 66: 2062–2069

    Article  CAS  Google Scholar 

  14. Yan YT, Wu G, Chen SC, Wang YZ. Sci China Chem, 2022, 65: 943–953

    Article  CAS  Google Scholar 

  15. Nishida H, Yamashita M, Endo T. Polym Degrad Stab, 2002, 78: 129–135

    Article  CAS  Google Scholar 

  16. Zhou Y, Zhang J, Qiu Z, Zeng Q, Chang J, Yang K, Wang Y. Soft Mater, 2009, 7: 277–295

    Article  CAS  Google Scholar 

  17. Yan YT, Wu G, Chen SC, Wang YZ. Chin Chem Lett, 2022, 33: 2151–2154

    Article  CAS  Google Scholar 

  18. Lai Q, Wang YZ, Yang KK, Wang XL, Zeng Q. React Funct Polyms, 2005, 65: 309–315

    Article  CAS  Google Scholar 

  19. Ding SD, Liu ZP, Yang T, Zheng GC, Wang YZ. J Polym Res, 2010, 17: 63–70

    Article  CAS  Google Scholar 

  20. Ding SD, Bai CY, Liu ZP, Wang YZ. J Therm Anal Calorim, 2008, 94: 89–95

    Article  CAS  Google Scholar 

  21. Ding SD, Wang YZ. Polym Degrad Stab, 2006, 91: 2465–2470

    Article  CAS  Google Scholar 

  22. Yuan Y, Ding SD, Zhao YQ, Wang YZ. J Macromol Sci Part B, 2016, 55: 532–546

    Article  ADS  CAS  Google Scholar 

  23. Pezzin APT, Duek EAR. J Appl Polym Sci, 2006, 101: 1899–1912

    Article  CAS  Google Scholar 

  24. Dias M, Antunes MCM, Santos Jr. AR, Felisberti MI. J Mater Sci-Mater Med, 2008, 19: 3535–3544

    Article  PubMed  CAS  Google Scholar 

  25. Zhou Y, Qiu ZC, Zhang JJ, Niu Y, Yang KK, Wang YZ. Soft Mater, 2011, 9: 393–408

    Article  CAS  Google Scholar 

  26. Dang HC, Luo YK, Xu C, Song F, Wang XL, Wang YZ. Ind Eng Chem Res, 2015, 54: 6269–6281

    Article  CAS  Google Scholar 

  27. Qiu ZC, Zhang JJ, Zhou Y, Song BY, Chang JJ, Yang KK, Wang YZ. Polym Adv Technol, 2011, 22: 993–1000

    Article  CAS  Google Scholar 

  28. Bhattarai N, Kim HY, Cha DI, Lee DR, Yoo DI. Eur Polym J, 2003, 39: 1365–1375

    Article  CAS  Google Scholar 

  29. Zheng GC, Ding SD, Zeng JB, Wang YZ, Li YD. J Macromol Sci Part B, 2010, 49: 269–285

    Article  ADS  CAS  Google Scholar 

  30. Qiu ZC, Zhang JJ, Niu Y, Huang CL, Yang KK, Wang YZ. Ind Eng Chem Res, 2011, 50: 10006–10016

    Article  CAS  Google Scholar 

  31. Wang C, Ge X, Yang K, Chen S, Wang Y. Soft Mater, 2009, 7: 116–131

    Article  Google Scholar 

  32. Yang KK, Zhou Y, Lu F, Huang FY, Qiu ZC, Wang YZ. J Macromol Sci Part B, 2009, 48: 1031–1041

    Article  ADS  CAS  Google Scholar 

  33. Nishida H, Yamashita M, Hattori N, Endo T, Tokiwa Y. Polym Degrad Stab, 2000, 70: 485–496

    Article  Google Scholar 

  34. Joshi R, Pasilis SP. J Mol Liquids, 2015, 209: 381–386

    Article  CAS  Google Scholar 

  35. Jacques B, Devaux J, Legras R, Nield E. Macromolecules, 1996, 29: 3129–3138

    Article  ADS  CAS  Google Scholar 

  36. Jacques B, Devaux J, Legras R, Nield E. Polymer, 1997, 38: 5367–5377

    Article  CAS  Google Scholar 

  37. Yang KK, Wang XL, Wang YZ, Huang HX. Mater Chem Phys, 2004, 87: 218–221

    Article  CAS  Google Scholar 

  38. Yang KK, Wang XL, Wang YZ, Huang HX. J Appl Polym Sci, 2006, 100: 2331–2335

    Article  CAS  Google Scholar 

  39. Cicero JA, Dorgan JR, Dec SF, Knauss DM. Polym Degrad Stab, 2002, 78: 95–105

    Article  CAS  Google Scholar 

  40. Meng X, Shi G, Wu C, Chen W, Xin Z, Shi Y, Sheng Y. Polym Degrad Stab, 2016, 124: 112–118

    Article  CAS  Google Scholar 

  41. Sirisinha K, Samana K. J Appl Polym Sci, 2021, 138: 49951

    Article  CAS  Google Scholar 

  42. Kissinger HE. Anal Chem, 1957, 29: 1702–1706

    Article  CAS  Google Scholar 

  43. Li XY, Zhou Q, Wen ZB, Hui Y, Yang KK, Wang YZ. Polym Degrad Stab, 2015, 121: 253–260

    Article  CAS  Google Scholar 

  44. Kawazu K, Nakagawa S, Ishizone T, Nojima S, Arai D, Yamaguchi K, Nakahama S. Macromolecules, 2017, 50: 7202–7210

    Article  ADS  CAS  Google Scholar 

  45. Ishikiriyama K, Pyda M, Zhang G, Forschner T, Grebowicz J, Wunderlich B. J Macromol Sci Part B, 1998, 37: 27–44

    Article  ADS  Google Scholar 

  46. Pezzin A, van Ekenstein GOR, Duek EAR. Polymer, 2001, 42: 8303–8306

    Article  CAS  Google Scholar 

  47. Liu X, Feng S, Wang X, Qi J, Lei D, Li Y, Bai W. Turk J Chem, 2020, 44: 1430–1444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zheng Y, Zhou J, Du F, Bao Y, Shan G, Zhang L, Dong H, Pan P. Cryst Growth Des, 2019, 19: 166–176

    Article  CAS  Google Scholar 

  49. Avrami M. J Chem Phys, 1939, 7: 1103–1112

    Article  ADS  CAS  Google Scholar 

  50. Furuhashi Y, Nakayama A, Monno T, Kawahara Y, Yamane H, Kimura Y, Iwata T. Macromol Rapid Commun, 2004, 25: 1943–1947

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFB3801904), the National Natural Science Foundation of China (U19A2095), the Institutional Research Fund from Sichuan University (2020SCUNL205), the Fundamental Research Funds for the Central Universities, and the 111 Project (B20001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wu or Yu-Zhong Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1732_MOESM1_ESM.pdf

Boosting Thermal Stability and Crystallization of Closed-Loop-Recyclable Biodegradable Poly(p-dioxanone) by End-Group Regulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Gui, ZX., Xiong, WT. et al. Boosting thermal stability and crystallization of closed-loop-recyclable biodegradable poly(p-dioxanone) by end-group regulation. Sci. China Chem. 67, 642–651 (2024). https://doi.org/10.1007/s11426-023-1732-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1732-1

Navigation