Skip to main content
Log in

Divergent defluorocarboxylation of α-CF3 alkenes with formate via photocatalyzed selective mono- or triple C-F bond cleavage

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Unprecedented divergent synthesis of gem-difluorovinylacetic acid and glutaric acid derivatives from α-CF3 alkenes with formate as the carbonyl source was disclosed. The reaction can undergo selective mono- or triple C-F bond cleavage by simply switching the photocatalyst and hydrogen atom transfer (HAT) catalyst under visible-light-induced conditions at room temperature. Foramte acts as both the C1 source and the reductant through the generation of CO2•− species, which underwent Giese radical addition to electron-deficient alkenes to trigger the consecutive C-F bond cleavage and carboxylation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chem Rev, 2021, 121: 4678–4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Uneyama K. Organofluorine Chemistry. New York: John Wiley & Sons, 2008

    Google Scholar 

  3. Selected examples for fluorination with DAST or Selectfluor, see: (a) Middleton WJ, Bingham EM. J Org Chem, 1980, 45: 2883–2887

    Article  CAS  Google Scholar 

  4. Xia JB, Zhu C, Chen C. J Am Chem Soc, 2013, 135: 17494–17500

    Article  CAS  PubMed  Google Scholar 

  5. For recent reviews, see: (a) Li S, Shu W. Chem Commun, 2022, 58: 1066–1077

    Article  CAS  Google Scholar 

  6. Yan G, Qiu K, Guo M. Org Chem Front, 2021, 8: 3915–3942

    Article  CAS  Google Scholar 

  7. Ahrens T, Kohlmann J, Ahrens M, Braun T. Chem Rev, 2015, 115: 931–972

    Article  CAS  PubMed  Google Scholar 

  8. Ai HJ, Ma X, Song Q, Wu XF. Sci China Chem, 2021, 64: 1630–1659

    Article  CAS  Google Scholar 

  9. Stahl T, Klare HFT, Oestreich M. ACS Catal, 2013, 3: 1578–1587

    Article  CAS  Google Scholar 

  10. Simur TT, Ye T, Yu YJ, Zhang FL, Wang YF. Chin Chem Lett, 2021, 33: 1193–1198

    Article  Google Scholar 

  11. For gem-difluoroalkenyl moiety as a carbonyl bioisostere, see: Pan Y, Qiu J, Silverman RB. J Med Chem, 2003, 46: 5292–5293

    Article  CAS  PubMed  Google Scholar 

  12. O’Hagan D. Chem Soc Rev, 2008, 37: 308–319

    Article  PubMed  Google Scholar 

  13. Fujita T, Fuchibe K, Ichikawa J. Angew Chem Int Ed, 2019, 58: 390–402

    Article  CAS  Google Scholar 

  14. Yan SS, Wu DS, Ye JH, Gong L, Zeng X, Ran CK, Gui YY, Li J, Yu DG. ACS Catal, 2019, 9: 6987–6992

    Article  CAS  Google Scholar 

  15. Gao XT, Zhang Z, Wang X, Tian JS, Xie SL, Zhou F, Zhou J. Chem Sci, 2020, 11: 10414–10420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li S, Davies PW, Shu W. Chem Sci, 2022, 13: 6636–6641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu P, Xu H, Wang S, Hao TZ, Yan SY, Guo D, Zhu X. Org Chem Front, 2023, 10: 2013–2017

    Article  CAS  Google Scholar 

  18. Beckwith ALJ, Norman ROC. J Chem Soc B, 1969, 400

  19. Wang H, Gao Y, Zhou C, Li G. J Am Chem Soc, 2020, 142: 8122–8129

    Article  CAS  PubMed  Google Scholar 

  20. Zhou C, Wang X, Yang L, Fu L, Li G. Green Chem, 2022, 24: 6100–6107

    Article  CAS  Google Scholar 

  21. Alektiar SN, Wickens ZK. J Am Chem Soc, 2021, 143: 13022–13028

    Article  CAS  PubMed  Google Scholar 

  22. Alektiar SN, Han J, Dang Y, Rubel CZ, Wickens ZK. J Am Chem Soc, 2023, 145: 10991–10997

    Article  CAS  PubMed  Google Scholar 

  23. Huang Y, Hou J, Zhan LW, Zhang Q, Tang WY, Li BD. ACS Catal, 2021, 11: 15004–15012

    Article  CAS  Google Scholar 

  24. Huang Y, Zhang Q, Zhan L, Hou J, Li B. Chin J Org Chem, 2022, 42: 2568–2573

    Article  CAS  Google Scholar 

  25. Reduction of α,β-unsaturated carboxylic acid derivatives, see: Hendy CM, Smith GC, Xu Z, Lian T, Jui NT. J Am Chem Soc, 2021, 143: 8987–8992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu P, Wang XY, Wang Z, Zhao J, Cao XD, Xiong XC, Yuan YC, Zhu S, Guo D, Zhu X. Org Lett, 2022, 24: 4075–4080

    Article  CAS  PubMed  Google Scholar 

  27. Xu P, Wang S, Xu H, Liu YQ, Li RB, Liu WW, Wang XY, Zou ML, Zhou Y, Guo D, Zhu X. ACS Catal, 2023, 13: 2149–2155

    Article  CAS  Google Scholar 

  28. Wang S, Xu P, Zhu X. ChemCatChem, 2023, e202300695

  29. For For transition-metal promoted defluorocarboxylation of gem-difluoroalkenes, see: (a) Zhu C, Zhang YF, Liu ZY, Zhou L, Liu H, Feng C. Chem Sci, 2019, 10: 6721–6726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xie SL, Cui XY, Gao XT, Zhou F, Wu HH, Zhou J. Org Chem Front, 2019, 6: 3678–3682

    Article  CAS  Google Scholar 

  31. Nihei T, Iwai N, Matsuda T, Kitazume T. J Org Chem, 2005, 70: 5912–5915

    Article  CAS  PubMed  Google Scholar 

  32. Romeo G, Materia L, Modica MN, Pittalà V, Salerno L, Siracusa MA, Manetti F, Botta M, Minneman KP. Eur J Med Chem, 2011, 46: 2676–2690

    Article  CAS  PubMed  Google Scholar 

  33. Chamberlain AER, Paterson KJ, Armstrong RJ, Twin HC, Donohoe TJ. Chem Commun, 2020, 56: 3563–3566

    Article  CAS  Google Scholar 

  34. Díaz-Rodríguez A, Iglesias-Fernández J, Rovira C, Gotor-Fernández V. ChemCatChem, 2014, 6: 977–980

    Article  Google Scholar 

  35. Jana A, Das K, Kundu A, Thorve PR, Adhikari D, Maji B. ACS Catal, 2020, 10: 2615–2626

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001224), the Natural Science Foundation of Jiangsu Province (BK20201014, BK20200106), and the Start-up Funding provided by Xuzhou Medical University. This work was also supported by the Jiangsu Specially-Appointed Professor Program (Xu Zhu) and Jiangsu Province Shuangchuang PhD Program (Pei Xu, JSSCBS20211267). The Public Experimental Research Centre of Xuzhou Medical University was also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song-Lei Zhu, Dong Guo or Xu Zhu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

11426_2023_1731_MOESM1_ESM.docx

Divergent defluorocarboxylation of α-CF3 alkenes with formate via photocatalyzed selective mono- or triple C-F bond cleavage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Xu, P., Liu, WW. et al. Divergent defluorocarboxylation of α-CF3 alkenes with formate via photocatalyzed selective mono- or triple C-F bond cleavage. Sci. China Chem. 67, 368–373 (2024). https://doi.org/10.1007/s11426-023-1731-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1731-x

Navigation