Skip to main content
Log in

Narrow bandgap molecular dyads Incorporating Y-series acceptor backbones for efficient single-molecular organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The performance of organic solar cells (OSCs) is mainly related to the bulk heterojunction (BHJ) microstructure of specific active layer systems, which is often in a metastable state. A promising strategy to address the abovementioned shortcomings of BHJs is to develop single-component active layer materials. Owing to the single-component small molecule materials with defined chemical structures generally exhibit poor absorption spectra, herein we first introduced narrow bandgap Y-series acceptors into the molecular skeleton of single-component materials, and designed two molecular dyads, SM-Et-1Y and SM-Et-2Y. The optical bandgaps (\(E_{\rm{g}}^{{\rm{opt}}}{\rm{s}}\)) of the two dyads are 1.364 and 1.361 eV, respectively, which are much smaller than those of previously reported single-component molecules. Consequently, the SM-Et-2Y-based single-component OSCs (SCOSCs) showed a power conversion efficiency (PCE) of 5.07%, superior to SM-Et-1Y (2.53%), which is one of the highest PCEs reported for SCOSCs to date. Moreover, both SM-Et-1Y- and SM-Et-2Y-based devices exhibited excellent photo-stability, retaining over 90% of their initial performance after 250 h of continuous illumination. Our results provide a deeper understanding of the molecular backbone and a guiding principle for the rational design or selection of non-fullerene single-component materials with suitable donor/acceptor ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J, Tan HS, Guo X, Facchetti A, Yan H. Nat Energy, 2018, 3: 720–731

    Article  CAS  Google Scholar 

  2. Guo J, Min J. Adv Energy Mater, 2019, 9: 1802521

    Article  Google Scholar 

  3. Gao Y, Yu Y, Guo J, Sun R, Wang T, Wang W, Min J. Adv Opt Mater, 2023, 11: 2202685

    Article  CAS  Google Scholar 

  4. Cui C, Li Y. Energy Environ Sci, 2019, 12: 3225–3246

    Article  CAS  Google Scholar 

  5. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  6. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  PubMed  Google Scholar 

  7. Shao Y, Gao Y, Sun R, Zhang M, Min J. Adv Mater, 2023, 35: 2208750

    Article  CAS  Google Scholar 

  8. Sun R, Wu Y, Yang X, Gao Y, Chen Z, Li K, Qiao J, Wang T, Guo J, Liu C, Hao X, Zhu H, Min J. Adv Mater, 2022, 34: 2110147

    Article  CAS  Google Scholar 

  9. Luo Z, Gao Y, Lai H, Li Y, Wu Z, Chen Z, Sun R, Ren J, Zhang C, He F, Woo HY, Min J, Yang C. Energy Environ Sci, 2022, 15: 4601–4611

    Article  CAS  Google Scholar 

  10. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2021, 65: 224–268

    Article  Google Scholar 

  11. Ge J, Hong L, Song W, Xie L, Zhang J, Chen Z, Yu K, Peng R, Zhang X, Ge Z. Adv Energy Mater, 2021, 11: 2100800

    Article  CAS  Google Scholar 

  12. Yang W, Luo Z, Sun R, Guo J, Wang T, Wu Y, Wang W, Guo J, Wu Q, Shi M, Li H, Yang C, Min J. Nat Commun, 2020, 11: 1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu L, Zhang M, Zhong W, Leng S, Zhou G, Zou Y, Su X, Ding H, Gu P, Liu F, Zhang Y. Energy Environ Sci, 2021, 14: 4341–4357

    Article  CAS  Google Scholar 

  14. Gao K, Jo SB, Shi X, Nian L, Zhang M, Kan Y, Lin F, Kan B, Xu B, Rong Q, Shui L, Liu F, Peng X, Zhou G, Cao Y, Jen AK. Adv Mater, 2019, 31: 1807842

    Article  Google Scholar 

  15. Zhao X, Sun R, Wu X, Zhang M, Gao Y, Wan J, Min J. Energy Environ Sci, 2023, 16: 1711–1720

    Article  CAS  Google Scholar 

  16. Sun W, Wang Y, Zhang Y, Sun B, Zhang Z, Xiao M, Li X, Huo Y, Xin J, Zhu Q, Ma W, Zhang H. Angew Chem Int Ed, 2022, 61: e202208383

    Article  CAS  Google Scholar 

  17. Yao J, Qiu B, Zhang ZG, Xue L, Wang R, Zhang C, Chen S, Zhou Q, Sun C, Yang C, Xiao M, Meng L, Li Y. Nat Commun, 2020, 11: 2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Zheng Z, Wang J, Liu X, Ren J, An C, Zhang S, Hou J. Adv Mater, 2023, 35: 2208305

    Article  CAS  Google Scholar 

  19. Zi M, Chen X, Tan S, Weng C, Zhao B. Chem Eng J, 2022, 443: 136455

    Article  CAS  Google Scholar 

  20. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 1457–1497

    Article  CAS  Google Scholar 

  21. He C, Pan Y, Ouyang Y, Shen Q, Gao Y, Yan K, Fang J, Chen Y, Ma CQ, Min J, Zhang C, Zuo L, Chen H. Energy Environ Sci, 2022, 15: 2537–2544

    Article  CAS  Google Scholar 

  22. Zhu L, Zhang M, Xu J, Li C, Yan J, Zhou G, Zhong W, Hao T, Song J, Xue X, Zhou Z, Zeng R, Zhu H, Chen CC, MacKenzie RCI, Zou Y, Nelson J, Zhang Y, Sun Y, Liu F. Nat Mater, 2022, 21: 656–663

    Article  CAS  PubMed  Google Scholar 

  23. Zhan L, Li S, Li Y, Sun R, Min J, Bi Z, Ma W, Chen Z, Zhou G, Zhu H, Shi M, Zuo L, Chen H. Joule, 2022, 6: 662–675

    Article  CAS  Google Scholar 

  24. Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J. Joule, 2022, 6: 171–184

    Article  CAS  Google Scholar 

  25. Zhou M, Liao C, Duan Y, Xu X, Yu L, Li R, Peng Q. Adv Mater, 2023, 35: 2208279

    Article  CAS  Google Scholar 

  26. Sun Y, Nian L, Kan Y, Ren Y, Chen Z, Zhu L, Zhang M, Yin H, Xu H, Li J, Hao X, Liu F, Gao K, Li Y. Joule, 2022, 6: 2835–2848

    Article  CAS  Google Scholar 

  27. Sun R, Wu Q, Guo J, Wang T, Wu Y, Qiu B, Luo Z, Yang W, Hu Z, Guo J, Shi M, Yang C, Huang F, Li Y, Min J. Joule, 2020, 4: 407–419

    Article  CAS  Google Scholar 

  28. Li X, Yang H, Du X, Lin H, Yang G, Zheng C, Tao S. Chem Eng J, 2023, 452: 139496

    Article  CAS  Google Scholar 

  29. Sun R, Guo J, Wu Q, Zhang Z, Yang W, Guo J, Shi M, Zhang Y, Kahmann S, Ye L, Jiao X, Loi MA, Shen Q, Ade H, Tang W, Brabec CJ, Min J. Energy Environ Sci, 2019, 12: 3118–3132

    Article  CAS  Google Scholar 

  30. Li Y, Wu J, Tang H, Yi X, Liu Z, Yang Q, Fu Y, Liu J, Xie Z. ACS Appl Mater Interfaces, 2022, 14: 31054–31065

    Article  CAS  PubMed  Google Scholar 

  31. Sun R, Guo J, Sun C, Wang T, Luo Z, Zhang Z, Jiao X, Tang W, Yang C, Li Y, Min J. Energy Environ Sci, 2019, 12: 384–395

    Article  CAS  Google Scholar 

  32. He Y, Li N, Brabec CJ. Org Mater, 2021, 03: 228–244

    Article  CAS  Google Scholar 

  33. Roncali J, Grosu I. Adv Sci, 2019, 6: 1801026

    Article  Google Scholar 

  34. He Y, Li N, Heumüller T, Wortmann J, Hanisch B, Aubele A, Lucas S, Feng G, Jiang X, Li W, Bäuerle P, Brabec CJ. Joule, 2022, 6: 1160–1171

    Article  CAS  Google Scholar 

  35. Li S, Yuan X, Zhang Q, Li B, Li Y, Sun J, Feng Y, Zhang X, Wu Z, Wei H, Wang M, Hu Y, Zhang Y, Woo HY, Yuan J, Ma W. Adv Mater, 2021, 33: 2101295

    Article  CAS  Google Scholar 

  36. Liang S, Liu B, Karuthedath S, Wang J, He Y, Tan WL, Li H, Xu Y, Li N, Hou J, Tang Z, Laquai F, McNeill CR, Brabec CJ, Li W. Angew Chem Int Ed, 2022, 61: e202209316

    Article  CAS  Google Scholar 

  37. Wu Y, Guo J, Wang W, Chen Z, Chen Z, Sun R, Wu Q, Wang T, Hao X, Zhu H, Min J. Joule, 2021, 5: 1800–1815

    Article  CAS  Google Scholar 

  38. Li C, Wu X, Sui X, Wu H, Wang C, Feng G, Wu Y, Liu F, Liu X, Tang Z, Li W. Angew Chem Int Ed, 2019, 58: 15532–15540

    Article  CAS  Google Scholar 

  39. Liang S, Xiao C, Xie C, Liu B, Fang H, Li W. Adv Mater, 2023, 35: 2300629

    Article  CAS  Google Scholar 

  40. Wang W, Sun R, Guo J, Guo J, Min J. Angew Chem Int Ed, 2019, 58: 14556–14561

    Article  CAS  Google Scholar 

  41. Aubele A, He Y, Kraus T, Li N, Mena-Osteritz E, Weitz P, Heumüller T, Zhang K, Brabec CJ, Bäuerle P. Adv Mater, 2022, 34: 2103573

    Article  CAS  Google Scholar 

  42. Feng G, Li J, He Y, Zheng W, Wang J, Li C, Tang Z, Osvet A, Li N, Brabec CJ, Yi Y, Yan H, Li W. Joule, 2019, 3: 1765–1781

    Article  CAS  Google Scholar 

  43. Park SH, Kim Y, Kwon NY, Lee YW, Woo HY, Chae W-, Park S, Cho MJ, Choi DH. Adv Sci, 2020, 7: 1902470

    Article  CAS  Google Scholar 

  44. Nierengarten JF, Eckert JF, Nicoud JF, Ouali L, Krasnikov V, Hadziioannou G. Chem Commun, 1999, 617–618

  45. Nguyen TL, Lee TH, Gautam B, Park SY, Gundogdu K, Kim JY, Woo HY. Adv Funct Mater, 2017, 27: 1702474

    Article  Google Scholar 

  46. Cao J, Du X, Chen S, Xiao Z, Ding L. Phys Chem Chem Phys, 2014, 16: 3512–3514

    Article  CAS  PubMed  Google Scholar 

  47. Xia D, Zhou S, Tan WL, Karuthedath S, Xiao C, Zhao C, Laquai F, McNeill CR, Li W. Aggregate, 2022, 4: e279

    Article  Google Scholar 

  48. Min J, Luponosov YN, Gasparini N, Richter M, Bakirov AV, Shcherbina MA, Chvalun SN, Grodd L, Grigorian S, Ameri T, Ponomarenko SA, Brabec CJ. Adv Energy Mater, 2015, 5: 1500386

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52061135206, 22279094) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang, Rui Sun or Jie Min.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Xiao, B., Wang, S. et al. Narrow bandgap molecular dyads Incorporating Y-series acceptor backbones for efficient single-molecular organic solar cells. Sci. China Chem. 66, 3205–3212 (2023). https://doi.org/10.1007/s11426-023-1720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1720-x

Navigation