Skip to main content
Log in

Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The emergence of the latest generation of small-molecule acceptor (SMA) materials, with Y6 as a typical example, accounts for the surge in device performance for organic solar cells (OSCs). This study proposes two new acceptors named Y6-C2 and Y6-C3, from judicious alteration of alkyl-chains branching positions away from the Y6 backbone. Compared to the Y6, the Y6-C2 exhibits similar optical and electrochemical properties, but better molecular packing and enhanced crystallinity. In contrast, the Y6-C3 shows a significant blue-shift absorption in the solid state relative to the Y6 and Y6-C2. The as-cast PM6:Y6-C2-based OSC yields a higher power conversion efficiency (PCE) of 15.89% than those based on the Y6 (15.24%) and Y6-C3 (13.76%), representing the highest known value for as-cast nonfullerene OSCs. Prominently, the Y6-C2 displays a good compatibility with the PC71BM. Therefore, a ternary OSC device based on PM6:Y6-C2:PC71BM (1.0:1.0:0.2) was produced, and it exhibits an outstanding PCE of 17.06% and an impressive fill factor (FF) of 0.772. Our results improve understanding of the structure-property relationship for state-of-the-art SMAs and demonstrate that modulating the structure of SMAs via fine-tuning of alkyl-chains branching positions is an effective method to enhance their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li G, Zhu R, Yang Y, Nat Photon, 2012, 6: 153–161

    CAS  Google Scholar 

  2. Lin Y, Zhan X, Acc Chem Res, 2016, 49: 175–183

    CAS  PubMed  Google Scholar 

  3. Hou J, Inganäs O, Friend RH, Gao F, Nat Mater, 2018, 17: 119–128

    CAS  PubMed  Google Scholar 

  4. Cheng P, Li G, Zhan X, Yang Y, Nat Photon, 2018, 12: 131–142

    CAS  Google Scholar 

  5. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X, Nat Rev Mater, 2018, 3: 18003

    CAS  Google Scholar 

  6. Lin Y, Zhan X, Adv Energy Mater, 2015, 5: 1501063

    Google Scholar 

  7. Baran D, Kirchartz T, Wheeler S, Dimitrov S, Abdelsamie M, Gorman J, Ashraf RS, Holliday S, Wadsworth A, Gasparini N, Kaienburg P, Yan H, Amassian A, Brabec CJ, Durrant JR, McCulloch I, Energy Environ Sci, 2016, 9: 3783–3793

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y, Sci China Chem, 2018, 61: 531–537

    CAS  Google Scholar 

  9. Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y, Sci China Chem, 2018, 61: 1307–1313

    CAS  Google Scholar 

  10. Chen H, Sci China Chem, 2019, 62: 403–404

    CAS  Google Scholar 

  11. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X, Adv Mater, 2015, 27: 1170–1174

    CAS  PubMed  Google Scholar 

  12. Li Y, Acc Chem Res, 2012, 45: 723–733

    CAS  PubMed  Google Scholar 

  13. Luo Z, Liu T, Chen Z, Xiao Y, Zhang G, Huo L, Zhong C, Lu X, Yan H, Sun Y, Yang C, Adv Sci, 2019, 6: 1802065

    Google Scholar 

  14. Che X, Li Y, Qu Y, Forrest SR, Nat Energy, 2018, 3: 422–427

    CAS  Google Scholar 

  15. Liu T, Luo Z, Fan Q, Zhang G, Zhang L, Gao W, Guo X, Ma W, Zhang M, Yang C, Li Y, Yan H, Energy Environ Sci, 2018, 11: 3275–3282

    CAS  Google Scholar 

  16. Gasparini N, Jiao X, Heumueller T, Baran D, Matt GJ, Fladischer S, Spiecker E, Ade H, Brabec CJ, Ameri T, Nat Energy, 2016, 1: 118

    Google Scholar 

  17. Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X, Nat Energy, 2018, 3: 952–959

    CAS  Google Scholar 

  18. An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B, Energy Environ Sci, 2016, 9: 281–322

    Google Scholar 

  19. Sun R, Guo J, Sun C, Wang T, Luo Z, Zhang Z, Jiao X, Tang W, Yang C, Li Y, Min J, Energy Environ Sci, 2019, 12: 384–395

    CAS  Google Scholar 

  20. Liu T, Luo Z, Chen Y, Yang T, Xiao Y, Zhang G, Ma R, Lu X, Zhan C, Zhang M, Yang C, Li Y, Yao J, Yan H, Energy Environ Sci, 2019, 12: 2529–2536

    CAS  Google Scholar 

  21. Luo Z, Liu T, Wang Y, Zhang G, Sun R, Chen Z, Zhong C, Wu J, Chen Y, Zhang M, Zou Y, Ma W, Yan H, Min J, Li Y, Yang C, Adv Energy Mater, 2019, 9: 1900041

    Google Scholar 

  22. Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H, Joule, 2019, 3: 3020–3033

    CAS  Google Scholar 

  23. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y, Joule, 2019, 3: 1140–1151

    CAS  Google Scholar 

  24. Yang Y, Zhang ZG, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y, J Am Chem Soc, 2016, 138: 15011–15018

    CAS  PubMed  Google Scholar 

  25. Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W, Adv Mater, 2018, 30: 1707150

    Google Scholar 

  26. Li Y, Zheng N, Yu L, Wen S, Gao C, Sun M, Yang R, Adv Mater, 2019, 31: 1807832

    Google Scholar 

  27. Sun H, Liu T, Yu J, Lau TK, Zhang G, Zhang Y, Su M, Tang Y, Ma R, Liu B, Liang J, Feng K, Lu X, Guo X, Gao F, Yan H, Energy Environ Sci, 2019, 12: 3328–3337

    CAS  Google Scholar 

  28. Cui Y, Yao H, Hong L, Zhang T, Xu Y, Xian K, Gao B, Qin J, Zhang J, Wei Z, Hou J, Adv Mater, 2019, 31: 1808356

    Google Scholar 

  29. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y, Sci China Chem, 2019, 62: 746–752

    CAS  Google Scholar 

  30. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y, Science, 2018, 361: 1094–1098

    CAS  PubMed  Google Scholar 

  31. Chang Y, Lau TK, Pan MA, Lu X, Yan H, Zhan C, Mater Horiz, 2019, 6: 2094–2102

    CAS  Google Scholar 

  32. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J, Nat Commun, 2019, 10: 2515

    PubMed  PubMed Central  Google Scholar 

  33. Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K, Woo HY, Ge Z, Hou J, Adv Mater, 2019, 31: 1903441

    Google Scholar 

  34. Li K, Wu Y, Tang Y, Pan M-, Ma W, Fu H, Zhan C, Yao J, Adv Energy Mater, 2019, 9: 1901728

    Google Scholar 

  35. Yan T, Song W, Huang J, Peng R, Huang L, Ge Z, Adv Mater, 2019, 31: 1902210

    Google Scholar 

  36. Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q, Adv Mater, 2019, 31: 1901872

    Google Scholar 

  37. Lin Y, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X, Yarali E, Seitkhan A, Bakr OM, El-Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos TD, Adv Mater, 2019, 31: 1902965

    CAS  Google Scholar 

  38. Luo Z, Bin H, Liu T, Zhang ZG, Yang Y, Zhong C, Qiu B, Li G, Gao W, Xie D, Wu K, Sun Y, Liu F, Li Y, Yang C, Adv Mater, 2018, 30: 1706124

    Google Scholar 

  39. Gao W, Zhang M, Liu T, Ming R, An Q, Wu K, Xie D, Luo Z, Zhong C, Liu F, Zhang F, Yan H, Yang C, Adv Mater, 2018, 30: 1800052

    Google Scholar 

  40. Liu T, Gao W, Wang Y, Yang T, Ma R, Zhang G, Zhong C, Ma W, Yan H, Yang C, Adv Funct Mater, 2019, 29: 1902155

    Google Scholar 

  41. Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y, Adv Mater, 2018, 30: 1707353

    Google Scholar 

  42. Sun H, Tang Y, Koh CW, Ling S, Wang R, Yang K, Yu J, Shi Y, Wang Y, Woo HY, Guo X, Adv Mater, 2019, 31: 1807220

    Google Scholar 

  43. Xiao L, He B, Hu Q, Maserati L, Zhao Y, Yang B, Kolaczkowski MA, Anderson CL, Borys NJ, Klivansky LM, Chen TL, Schwartzberg AM, Russell TP, Cao Y, Peng X, Liu Y, Joule, 2018, 2: 2154–2166

    CAS  Google Scholar 

  44. Xu X, Yu T, Bi Z, Ma W, Li Y, Peng Q, Adv Mater, 2018, 30: 1703973

    Google Scholar 

  45. Luo Z, Sun C, Chen S, Zhang ZG, Wu K, Qiu B, Yang C, Li Y, Yang C, Adv Energy Mater, 2018, 8: 1800856

    Google Scholar 

  46. Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y, Nat Commun, 2016, 7: 13651

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su CJ, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X, J Am Chem Soc, 2016, 138: 2973–2976

    CAS  PubMed  Google Scholar 

  48. Feng S, Zhang C, Liu Y, Bi Z, Zhang Z, Xu X, Ma W, Bo Z, Adv Mater, 2017, 29: 1703527

    Google Scholar 

  49. Wang J, Wang W, Wang X, Wu Y, Zhang Q, Yan C, Ma W, You W, Zhan X, Adv Mater, 2017, 29: 1702125

    Google Scholar 

  50. Dou JH, Zheng YQ, Lei T, Zhang SD, Wang Z, Zhang WB, Wang JY, Pei J, Adv Funct Mater, 2014, 24: 6270–6278

    CAS  Google Scholar 

  51. Lei T, Dou JH, Pei J, Adv Mater, 2012, 24: 6457–6461

    CAS  PubMed  Google Scholar 

  52. Meager I, Ashraf RS, Mollinger S, Schroeder BC, Bronstein H, Beatrup D, Vezie MS, Kirchartz T, Salleo A, Nelson J, McCulloch I, J Am Chem Soc, 2013, 135: 11537–11540

    CAS  PubMed  Google Scholar 

  53. Zhang F, Hu Y, Schuettfort T, Di C, Gao X, McNeill CR, Thomsen L, Mannsfeld SCB, Yuan W, Sirringhaus H, Zhu D, J Am Chem Soc, 2013, 135: 2338–2349

    CAS  PubMed  Google Scholar 

  54. Wang N, Zhan L, Li S, Shi M, Lau TK, Lu X, Shikler R, Li CZ, Chen H, Mater Chem Front, 2018, 2: 2006–2012

    CAS  Google Scholar 

  55. Li W, Chen M, Cai J, Spooner ELK, Zhang H, Gurney RS, Liu D, Xiao Z, Lidzey DG, Ding L, Wang T, Joule, 2019, 3: 819–833

    CAS  Google Scholar 

  56. Lu T. molclus program, Version 1.8.8, http://www.keinsci.com/re-search/molclus.html

  57. Řezáč J, Hobza P, J Chem Theor Comput, 2012, 8: 141-151

    Google Scholar 

  58. MOPAC2016. http://OpenMOPAC.net/, Version 2016, J.J.P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA

  59. Neese F, J Comput Chem, 2003, 24: 1740–1747

    CAS  PubMed  Google Scholar 

  60. Neese F, WIREs Comput Mol Sci, 2012, 2: 73–78

    CAS  Google Scholar 

  61. Humphrey W, Dalke A, Schulten K, J Mol Graphics, 1996, 14: 33–38

    CAS  Google Scholar 

  62. Baumann A, Lorrmann J, Rauh D, Deibel C, Dyakonov V, Adv Mater, 2012, 24: 4381–4386

    CAS  PubMed  Google Scholar 

  63. Min J, Luponosov YN, Gasparini N, Richter M, Bakirov AV, Shcherbina MA, Chvalun SN, Grodd L, Grigorian S, Ameri T, Po-nomarenko SA, Brabec CJ, Adv Energy Mater, 2015, 5: 1500386

    Google Scholar 

  64. Azimi H, Heumüller T, Gerl A, Matt G, Kubis P, Distaso M, Ahmad R, Akdas T, Richter M, Peukert W, Brabec CJ, Adv Energy Mater, 2013, 3: 1589–1596

    CAS  Google Scholar 

  65. Clarke TM, Rodovsky DB, Herzing AA, Peet J, Dennler G, De-Longchamp D, Lungenschmied C, Mozer AJ, Adv Energy Mater, 2011, 1: 1062–1067

    CAS  Google Scholar 

  66. Min J, Güldal NS, Guo J, Fang C, Jiao X, Hu H, Heumüller T, Ade H, Brabec CJ, J Mater Chem A, 2017, 5: 18101–18110

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21572171, 21702154, 51773157, 51873160), the National Basic Research Program of China (2013CB834805), Shenzhen Peacock Plan (KQTD2017033011-0107046), Beijing National Laboratory for Molecular Sciences (BNLMS201905). We thank the Australian Synchrotron, part of ANSTO for partial work on the SAXS/WAXS beamline and the Supercomputing Center of Wuhan University for numerical work conducted using the supercomputing system.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuechen Jiao, Jie Min or Chuluo Yang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Supporting Information

11426_2019_9670_MOESM1_ESM.docx

Manipulating Alkyl-Chain Branching Position to Boost the Performance of Small-Molecule Acceptors for Highly Efficient Nonfullerene Organic Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Sun, R., Zhong, C. et al. Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Sci. China Chem. 63, 361–369 (2020). https://doi.org/10.1007/s11426-019-9670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9670-2

Keywords

Navigation