Skip to main content
Log in

pH-Dependent binding energy-induced inflection-point behaviors for pH-universal hydrogen oxidation reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of hydrogen oxidation reaction (HOR) declines with orders of magnitude when the electrolyte varies from acid to base. Therefore, unveiling the mechanism of pH-dependent HOR and narrowing the acid-base kinetic gap are indispensable and challenging. Here, the HOR behaviors of palladium phosphides and their counterpart (PdP2/C, Pd5P2/C, Pd3P/C, and Pd/C) in the whole pH region (from pH 1 to 13) are explored. Unexpectedly, there are non-monotonous relationships between their HOR kinetics and varied pHs, showing distinct inflection-point behaviors (inflection points and acid-base kinetic gaps). We find the inflection-point behaviors can be explained by the discrepant role of pH-dependent hydroxyl binding energy (OHBE) and hydrogen binding energy (HBE) induced HOR kinetics under the entire pH range. We further reveal that the strengthened OHBE is responsible for the earlier appearance of the inflection point and much narrower acid-base kinetic gap. These findings are conducive to understanding the mechanism of the pH-targeted HOR process, and provide a new strategy for rational designing advanced HOR electrocatalysts under alkaline electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang Y, Li P, Zheng X, Sun W, Dou SX, Ma T, Pan H. Chem Soc Rev, 2022, 51: 9620–9693

    Article  CAS  PubMed  Google Scholar 

  2. Yan QQ, Yin P, Liang HW. ACS Mater Lett, 2021, 3: 1197–1212

    Article  CAS  Google Scholar 

  3. Zhang Y, Li G, Zhao Z, Han L, Feng Y, Liu S, Xu B, Liao H, Lu G, Xin HL, Huang X. Adv Mater, 2021, 33: 2105049

    Article  CAS  Google Scholar 

  4. Sheng W, Gasteiger HA, Shao-Horn Y. J Electrochem Soc, 2010, 157: B1529

    Article  CAS  Google Scholar 

  5. Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA. Energy Environ Sci, 2014, 7: 2255–2260

    Article  CAS  Google Scholar 

  6. Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas AP, Stamenkovic VR, Markovic NM. Nat Chem, 2013, 5: 300–306

    Article  CAS  PubMed  Google Scholar 

  7. Men Y, Wu D, Hu Y, Li L, Li P, Jia S, Wang J, Cheng G, Chen S, Luo W. Angew Chem Int Ed, 2023, 62: e202217976

    Article  CAS  Google Scholar 

  8. Yao ZC, Tang T, Jiang Z, Wang L, Hu JS, Wan LJ. ACS Nano, 2022, 16: 5153–5183

    Article  CAS  PubMed  Google Scholar 

  9. Luo H, Wang K, Lin F, Lv F, Zhou J, Zhang W, Wang D, Zhang W, Zhang Q, Gu L, Luo M, Guo S. Adv Mater, 2023, 35: 2211854

    Article  CAS  Google Scholar 

  10. Huang G, Li Y, Tao L, Huang Z, Kong Z, Xie C, Du S, Wang T, Wu Y, Liu Q, Zhang D, Lin J, Li M, Wang J, Zhang J, Lu S, Cheng Y, Wang S. Angew Chem Int Ed, 2023, 62: e202215177

    Article  CAS  Google Scholar 

  11. Yang X, Wang Y, Wang X, Mei B, Luo E, Li Y, Meng Q, Jin Z, Jiang Z, Liu C, Ge J, Xing W. Angew Chem Int Ed, 2021, 60: 26177–26183

    Article  CAS  Google Scholar 

  12. Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y. Sci Adv, 2016, 2: e1501602

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang B, Huang H, Huang M, Yan P, Isimjan TT, Yang X. Sci China Chem, 2020, 63: 841–849

    Article  CAS  Google Scholar 

  14. Sheng W, Myint MNZ, Chen JG, Yan Y. Energy Environ Sci, 2013, 6: 1509–1512

    Article  CAS  Google Scholar 

  15. Ledezma-Yanez I, Wallace WDZ, Sebastián-Pascual P, Climent V, Feliu JM, Koper MTM. Nat Energy, 2017, 2: 17031

    Article  CAS  Google Scholar 

  16. Dekel DR. Curr Opin Electrochem, 2018, 12: 182–188

    Article  CAS  Google Scholar 

  17. Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM. Science, 2011, 334: 1256–1260

    Article  CAS  PubMed  Google Scholar 

  18. Strmcnik D, Lopes PP, Genorio B, Stamenkovic VR, Markovic NM. Nano Energy, 2016, 29: 29–36

    Article  CAS  Google Scholar 

  19. Zhang X, Li Z, Sun X, Wei L, Niu H, Chen S, Chen Q, Wang C, Zheng F. ACS Mater Lett, 2022, 4: 2097–2105

    Article  CAS  Google Scholar 

  20. Li J, Ghoshal S, Bates MK, Miller TE, Davies V, Stavitski E, Attenkofer K, Mukerjee S, Ma ZF, Jia Q. Angew Chem Int Ed, 2017, 56: 15594–15598

    Article  CAS  Google Scholar 

  21. Wang Y, Wang X, Ze H, Zhang X, Radjenovic PM, Zhang Y, Dong J, Tian Z, Li J. Angew Chem Int Ed, 2021, 60: 5708–5711

    Article  CAS  Google Scholar 

  22. McCrum IT, Koper MTM. Nat Energy, 2020, 5: 891–899

    Article  CAS  Google Scholar 

  23. Men Y, Su X, Li P, Tan Y, Ge C, Jia S, Li L, Wang J, Cheng G, Zhuang L, Chen S, Luo W. J Am Chem Soc, 2022, 144: 12661–12672

    Article  CAS  PubMed  Google Scholar 

  24. Kim J, Jung H, Jung SM, Hwang J, Kim DY, Lee N, Kim KS, Kwon H, Kim YT, Han JW, Kim JK. J Am Chem Soc, 2021, 143: 1399–1408

    Article  CAS  PubMed  Google Scholar 

  25. Su L, Jin Y, Gong D, Ge X, Zhang W, Fan X, Luo W. Angew Chem Int Ed, 2023, 62: e202215585

    Article  CAS  Google Scholar 

  26. Zhou P, Li N, Chao Y, Zhang W, Lv F, Wang K, Yang W, Gao P, Guo S. Angew Chem Int Ed, 2019, 58: 14184–14188

    Article  CAS  Google Scholar 

  27. Henkes AE, Vasquez Y, Schaak RE. J Am Chem Soc, 2007, 129: 1896–1897

    Article  CAS  PubMed  Google Scholar 

  28. Guo Z, Wang R, Guo Y, Jiang J, Wang Z, Li W, Zhang M. ACS Catal, 2022, 12: 15193–15206

    Article  CAS  Google Scholar 

  29. Jin C, Li J, Zhang K, Habibullah K, Xia G, Wu C, Wang Y, Cen W, Chen Y, Yan Y, Chen Y. Nano Energy, 2022, 99: 107360

    Article  CAS  Google Scholar 

  30. Luo F, Zhang Q, Yu X, Xiao S, Ling Y, Hu H, Guo L, Yang Z, Huang L, Cai W, Cheng H. Angew Chem Int Ed, 2018, 57: 14862–14867

    Article  CAS  Google Scholar 

  31. Zhang G, Wang A, Niu L, Gao W, Hu W, Liu Z, Wang R, Chen J. Adv Energy Mater, 2022, 12: 2103511

    Article  CAS  Google Scholar 

  32. Liu Y, Ding J, Li F, Su X, Zhang Q, Guan G, Hu F, Zhang J, Wang Q, Jiang Y, Liu B, Yang HB. Adv Mater, 2023, 35: 2207114

    Article  CAS  Google Scholar 

  33. Zhou S, Jang H, Qin Q, Hou L, Kim MG, Liu S, Liu X, Cho J. Angew Chem Int Ed, 2022, 61: e202212196

    Article  CAS  Google Scholar 

  34. Ohyama J, Sato T, Yamamoto Y, Arai S, Satsuma A. J Am Chem Soc, 2013, 135: 8016–8021

    Article  CAS  PubMed  Google Scholar 

  35. Janssen A, Nguyen QN, Xia Y. Angew Chem Int Ed, 2021, 60: 12192–12203

    Article  CAS  Google Scholar 

  36. Shen T, Chen S, Zhang C, Hu Y, Ma E, Yang Y, Hu J, Wang D. Adv Funct Mater, 2021, 32: 2107672

    Article  Google Scholar 

  37. Zhou Y, Xie Z, Jiang J, Wang J, Song X, He Q, Ding W, Wei Z. Nat Catal, 2020, 3: 454–462

    Article  CAS  Google Scholar 

  38. Rebollar L, Intikhab S, Oliveira NJ, Yan Y, Xu B, McCrum IT, Snyder JD, Tang MH. ACS Catal, 2020, 10: 14747–14762

    Article  CAS  Google Scholar 

  39. Zhu S, Qin X, Xiao F, Yang S, Xu Y, Tan Z, Li J, Yan J, Chen Q, Chen M, Shao M. Nat Catal, 2021, 4: 711–718

    Article  CAS  Google Scholar 

  40. Kim H, Yoo JM, Chung DY, Kim Y, Jung M, Bootharaju MS, Kim J, Koo S, Shin H, Na G, Mun BS, Kwak JH, Sung YE, Hyeon T. ACS Nano, 2022, 16: 16529–16538

    Article  CAS  PubMed  Google Scholar 

  41. Zhang J, Zhang L, Liu J, Zhong C, Tu Y, Li P, Du L, Chen S, Cui Z. Nat Commun, 2022, 13: 5497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duan Y, Yu ZY, Yang L, Zheng LR, Zhang CT, Yang XT, Gao FY, Zhang XL, Yu X, Liu R, Ding HH, Gu C, Zheng XS, Shi L, Jiang J, Zhu JF, Gao MR, Yu SH. Nat Commun, 2020, 11: 4789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jiang J, Liao J, Tao S, Najam T, Ding W, Wang H, Wei Z. Electrochim Acta, 2020, 333: 135444

    Article  CAS  Google Scholar 

  44. Wang M, Yang H, Shi J, Chen Y, Zhou Y, Wang L, Di S, Zhao X, Zhong J, Cheng T, Zhou W, Li Y. Angew Chem Int Ed, 2021, 60: 5771–5777

    Article  CAS  Google Scholar 

  45. Mao J, He CT, Pei J, Liu Y, Li J, Chen W, He D, Wang D, Li Y. Nano Lett, 2020, 20: 3442–3448

    Article  CAS  PubMed  Google Scholar 

  46. Liu H, Fu J, Li H, Sun J, Liu X, Qiu Y, Peng X, Liu Y, Bao H, Zhuo L, Cao R, Zhang S, Luo J. Appl Catal B-Environ, 2022, 306: 121029

    Article  CAS  Google Scholar 

  47. Zhang Z, Ni L, Liu H, Zhao ZL, Yuan XZ, Li H. Sci China Chem, 2022, 65: 611–618

    Article  CAS  Google Scholar 

  48. Wang Z, Shen K, Chen L, Li Y. Sci China Chem, 2022, 65: 619–629

    Article  CAS  Google Scholar 

  49. Hu Q, Gao K, Wang X, Zheng H, Cao J, Mi L, Huo Q, Yang H, Liu J, He C. Nat Commun, 2022, 13: 3958

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFB4001200), the National Natural Science Foundation of China (22272121, 21972107), and the Natural Science Foundation of Hubei Province (2020CFA095). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University. We thank the Core Facility of Wuhan University for the measurements of ICP-AES and XPS. We also thank the Core Research Facilities of the College of Chemistry and Molecular Sciences of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Luo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Jin, Y., Fan, X. et al. pH-Dependent binding energy-induced inflection-point behaviors for pH-universal hydrogen oxidation reaction. Sci. China Chem. 66, 3262–3268 (2023). https://doi.org/10.1007/s11426-023-1709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1709-0

Navigation