Skip to main content
Log in

Recent advances in Raman spectroelectrochemistry on single-crystal surfaces

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Benefiting from a principally contaminant-free and well-defined surface, single-crystal electrodes offer new insights into interfacial processes and are important in electrochemistry. The early impetus for using single-crystal electrodes in electro-catalysis was to investigate the surface structure at the atomic level for the reactions that are sensitive to the surface. These studies were usually performed in an ultra-high vacuum with atomic force microscopy (AFM), scanning tunneling microscope (STM), and X-ray methods to avoid the contamination. However, such characterizations are limited in their ability to identify chemical species definitively, a limitation that has similarly plagued the study of single-crystals. Recent advances in shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) have enabled the detection of reaction intermediates on single-crystal electrodes, in which shell-isolated nanoparticles on the single-crystal electrode can enhance the Raman signal from the surface, without changing the surface structure and electrochemical response. Thus, this work aims to review recent advances in Raman spectroelectrochemical studies on single-crystal electrode surfaces. The discussion focuses on how SHINERS technology has enabled the effective detection of intermediate species and, when combined with the electrochemical method, has yielded novel insights into the dynamic evolution of surface structure and electrocatalytic reaction mechanisms. Finally, the challenges and future of single-crystal electrodes are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sun SG, Clavilier J, Bewick A. J Electroanal Chem Interfacial Electrochem, 1988, 240: 147–159

    Article  CAS  Google Scholar 

  2. Clavilier J, Feliu JM, Aldaz A. J Electroanal Chem Interfacial Electrochem, 1988, 243: 419–433

    Article  CAS  Google Scholar 

  3. Clavilier J, Armand D. J Electroanal Chem Interfacial Electrochem, 1986, 199: 187–200

    Article  CAS  Google Scholar 

  4. Ohtani H, Kao CT, Van Hove MA, Somorjai GA. Prog Surf Sci, 1986, 23: 155–316

    Article  Google Scholar 

  5. Binnig G, Rohrer H. Surf Sci, 1983, 126: 236–244

    Article  CAS  Google Scholar 

  6. Bockris JOM, Jeng KT. J Electroanal Chem, 1992, 330: 541–581

    Article  CAS  Google Scholar 

  7. Kibler LA, Cuesta A, Kleinert M, Kolb DM. J Electroanal Chem, 2000, 484: 73–82

    Article  CAS  Google Scholar 

  8. Kolb D. Prog Surf Sci, 1996, 51: 109–173

    Article  CAS  Google Scholar 

  9. Kolb DM, Schneider J. Electrochim Acta, 1986, 31: 929–936

    Article  CAS  Google Scholar 

  10. Hamill J, Zhour K, Diddens D, Baghernejad M. Electrochem Commun, 2022, 140: 107332

    Article  CAS  Google Scholar 

  11. Climent V, Feliu JM. J Solid State Electrochem, 2011, 15: 1297–1315

    Article  CAS  Google Scholar 

  12. Clavilier J, Faure R, Guinet G, Durand R. J Electroanal Chem Interfacial Electrochem, 1980, 107: 205–209

    Article  CAS  Google Scholar 

  13. Ross Jr. PN. Surf Sci, 1981, 102: 463–485

    Article  CAS  Google Scholar 

  14. Dickertmann D, Koppitz FD, Schultze JW. Electrochim Acta, 1976, 21: 967–971

    Article  CAS  Google Scholar 

  15. Gómez R, Clavilier J. J Electroanal Chem, 1993, 354: 189–208

    Article  Google Scholar 

  16. Fleischmann M, Hendra PJ, McQuillan AJ. Chem Phys Lett, 1974, 26: 163–166

    Article  CAS  Google Scholar 

  17. Albrecht MG, Creighton JA. J Am Chem Soc, 1977, 99: 5215–5217

    Article  CAS  Google Scholar 

  18. Mengoli G, Musiani MM, Fleischman M, Mao B, Tian ZQ. Electrochim Acta, 1987, 32: 1239–1245

    Article  CAS  Google Scholar 

  19. Driskell JD, Lipert RJ, Porter MD. J Phys Chem B, 2006, 110: 17444–17451

    Article  PubMed  CAS  Google Scholar 

  20. Aravind PK, Metiu H. J Phys Chem, 1982, 86: 5076–5084

    Article  CAS  Google Scholar 

  21. Hayazawa N, Inouye Y, Sekkat Z, Kawata S. Optics Commun, 2000, 183: 333–336

    Article  CAS  Google Scholar 

  22. Anderson MS. Appl Phys Lett, 2000, 76: 3130–3132

    Article  CAS  Google Scholar 

  23. Stöckle RM, Suh YD, Deckert V, Zenobi R. Chem Phys Lett, 2000, 318: 131–136

    Article  Google Scholar 

  24. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ. Nature, 2010, 464: 392–395

    Article  PubMed  CAS  Google Scholar 

  25. Clavilier J, Rodes A, Achi KE, Zamakhchari MA. J Chim Phys, 1991, 88: 1291–1337

    Article  CAS  Google Scholar 

  26. Kolb DM. Angew Chem Int Ed, 2001, 40: 1162–1181

    Article  CAS  Google Scholar 

  27. Climent V, Feliu JM. Surface Electrochemistry with Pt Single-Crystal Electrodes. Nanopatterned and Nanoparticle-Modified Electrodes. First Edit. Wiley-VCH Verlag GmbH & Co. KGaA, 2017. 1–57

  28. Climent V, Feliu J. Annu Rev Anal Chem, 2020, 13: 201–222

    Article  CAS  Google Scholar 

  29. Bard AJ, Abruna HD, Chidsey CE, Faulkner LR, Feldberg SW, Itaya K, Majda M, Melroy O, Murray RW. J Phys Chem, 1993, 97: 7147–7173

    Article  CAS  Google Scholar 

  30. Liu HX, Tian N, Ye JY, Lu BA, Ren J, Huangfu ZC, Zhou ZY, Sun SG. Faraday Discuss, 2014, 176: 409–428

    Article  PubMed  CAS  Google Scholar 

  31. Kumeda T, Tajiri H, Sakata O, Hoshi N, Nakamura M. Nat Commun, 2018, 9: 4378

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xia XH, Liess HD, Iwasita T. J Electroanal Chem, 1997, 437: 233–240

    Article  CAS  Google Scholar 

  33. Faguy PW, Markovic N, Adzic RR, Fierro CA, Yeager EB. J Electroanal Chem Interfacial Electrochem, 1990, 289: 245–262

    Article  CAS  Google Scholar 

  34. Mojet BL, Ebbesen SD, Lefferts L. Chem Soc Rev, 2010, 39: 4643–4655

    Article  PubMed  CAS  Google Scholar 

  35. Chang X, Vijay S, Zhao Y, Oliveira NJ, Chan K, Xu B. Nat Commun, 2022, 13: 2656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Frumkin AN, Aikazyan A. Russ Chem Bull, 1959, 8: 188–197

    Article  Google Scholar 

  37. Slygin A, Frumkin AN. Acla Physicocbim URSS, 1935, 3: 791

    Google Scholar 

  38. He Q, Zeng L, Han L, Peng J, Sartin MM, Tan YZ, Zhan D, Tian ZQ. Sci China Chem, 2022, 65: 318–321

    Article  CAS  Google Scholar 

  39. He Q, Zeng L, Han L, Sartin MM, Peng J, Li JF, Oleinick A, Svir I, Amatore C, Tian ZQ, Zhan D. J Am Chem Soc, 2021, 143: 18419–18425

    Article  PubMed  CAS  Google Scholar 

  40. Will FG. J Electrochem Soc, 1965, 112: 451–455

    Article  CAS  Google Scholar 

  41. Yeager E, O’Grady WE, Woo MYC, Hagans P. J Electrochem Soc, 1978, 125: 348–349

    Article  CAS  Google Scholar 

  42. Marinković NS, Marković NM, Adzić RR. J Electroanal Chem, 1992, 330: 433–452

    Article  Google Scholar 

  43. Dong JC, Zhang XG, Briega-Martos V, Jin X, Yang J, Chen S, Yang ZL, Wu DY, Feliu JM, Williams CT, Tian ZQ, Li JF. Nat Energy, 2019, 4: 60–67

    Article  CAS  Google Scholar 

  44. Barber JH, Conway BE. J Electroanal Chem, 1999, 461: 80–89

    Article  CAS  Google Scholar 

  45. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M. Langmuir, 2009, 25: 1897–1900

    Article  PubMed  CAS  Google Scholar 

  46. Berna A, Climent V, Feliu J. Electrochem Commun, 2007, 9: 2789–2794

    Article  CAS  Google Scholar 

  47. Rinaldo SG, Lee W, Stumper J, Eikerling M. Electrocatalysis, 2014, 5: 262–272

    Article  CAS  Google Scholar 

  48. Koper MTM, Lukkien JJ. J Electroanal Chem, 2000, 485: 161–165

    Article  CAS  Google Scholar 

  49. Chen J, Luo S, Liu Y, Chen S. ACS Appl Mater Interfaces, 2016, 8: 20448–20458

    Article  PubMed  CAS  Google Scholar 

  50. Strmcnik D, Tripkovic D, van der Vliet D, Stamenkovic V, Marković NM. Electrochem Commun, 2008, 10: 1602–1605

    Article  CAS  Google Scholar 

  51. Conway BE, Barber J, Morin S. Electrochim Acta, 1998, 44: 1109–1125

    Article  CAS  Google Scholar 

  52. van der Niet MJTC, Garcia-Araez N, Hernandez J, Feliu JM, Koper MTM. Catal Today, 2013, 202: 105–113

    Article  CAS  Google Scholar 

  53. Rizo R, Fernández-Vidal J, Hardwick LJ, Attard GA, Vidal-Iglesias FJ, Climent V, Herrero E, Feliu JM. Nat Commun, 2022, 13: 2550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Conway BE, Tilak BV. Electrochim Acta, 2002, 47: 3571–3594

    Article  CAS  Google Scholar 

  55. Xu X, Wu DY, Ren B, Xian H, Tian ZQ. Chem Phys Lett, 1999, 311: 193–201

    Article  CAS  Google Scholar 

  56. Ren B, Huang QJ, Cai WB, Mao BW, Liu FM, Tian ZQ. J Electroanal Chem, 1996, 415: 175–178

    Article  Google Scholar 

  57. Li JF, Anema JR, Yu YC, Yang ZL, Huang YF, Zhou XS, Ren B, Tian ZQ. Chem Commun, 2011, 47: 2023–2025

    Article  CAS  Google Scholar 

  58. Gilroy D, Conway BE. Can J Chem, 1968, 46: 875–890

    Article  CAS  Google Scholar 

  59. Tremiliosi-Filho G, Jerkiewicz G, Conway BE. Langmuir, 1992, 8: 658–667

    Article  CAS  Google Scholar 

  60. Angerstein-Kozlowska H, Conway BE, Sharp WBA. J Electroanal Chem Interfacial Electrochem, 1973, 43: 9–36

    Article  CAS  Google Scholar 

  61. Vassiliev YB, Bagotzky VS, Gromyko VA. J Electroanal Chem Interfacial Electrochem, 1984, 178: 247–269

    Article  Google Scholar 

  62. Wakisaka M, Asizawa S, Uchida H, Watanabe M. Phys Chem Chem Phys, 2010, 12: 4184–4190

    Article  PubMed  CAS  Google Scholar 

  63. Li CY, Dong JC, Jin X, Chen S, Panneerselvam R, Rudnev AV, Yang ZL, Li JF, Wandlowski T, Tian ZQ. J Am Chem Soc, 2015, 137: 7648–7651

    Article  PubMed  CAS  Google Scholar 

  64. Bodappa N, Su M, Zhao Y, Le JB, Yang WM, Radjenovic P, Dong JC, Cheng J, Tian ZQ, Li JF. J Am Chem Soc, 2019, 141: 12192–12196

    Article  PubMed  CAS  Google Scholar 

  65. Guan S, Donovan-Sheppard O, Reece C, Willock DJ, Wain AJ, Attard GA. ACS Catal, 2016, 6: 1822–1832

    Article  CAS  Google Scholar 

  66. Guan S, Attard GA, Wain AJ. ACS Catal, 2020, 10: 10999–11010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Schultz ZD, Shaw SK, Gewirth AA. J Am Chem Soc, 2005, 127: 15916–15922

    Article  PubMed  CAS  Google Scholar 

  68. Ataka K, Yotsuyanagi T, Osawa M. J Phys Chem, 1996, 100: 10664–10672

    Article  CAS  Google Scholar 

  69. Chen YX, Zou SZ, Huang KQ, Tian ZQ. J Raman Spectrosc, 1998, 29: 749–756

    Article  CAS  Google Scholar 

  70. Toney MF, Howard JN, Richer J, Borges GL, Gordon JG, Melroy OR, Wiesler DG, Yee D, Sorensen LB. Nature, 1994, 368: 444–446

    Article  CAS  Google Scholar 

  71. Li CY, Le JB, Wang YH, Chen S, Yang ZL, Li JF, Cheng J, Tian ZQ. Nat Mater, 2019, 18: 697–701

    Article  PubMed  CAS  Google Scholar 

  72. Wang YH, Zheng S, Yang WM, Zhou RY, He QF, Radjenovic P, Dong JC, Li S, Zheng J, Yang ZL, Attard G, Pan F, Tian ZQ, Li JF. Nature, 2021, 600: 81–85

    Article  PubMed  CAS  Google Scholar 

  73. Lu S, Jin Y, Gu H, Zhang W. Sci China Chem, 2017, 60: 999–1006

    Article  CAS  Google Scholar 

  74. Huang X, Wang Y, Li W, Hou Y. Sci China Chem, 2017, 60: 1494–1507

    Article  CAS  Google Scholar 

  75. Dong JC, Su M, Briega-Martos V, Li L, Le JB, Radjenovic P, Zhou XS, Feliu JM, Tian ZQ, Li JF. J Am Chem Soc, 2020, 142: 715–719

    Article  PubMed  CAS  Google Scholar 

  76. Rudnev AV, Kuzume A, Fu Y, Wandlowski T. Electrochim Acta, 2014, 133: 132–145

    Article  CAS  Google Scholar 

  77. Su M, Dong JC, Le JB, Zhao Y, Yang WM, Yang ZL, Attard G, Liu GK, Cheng J, Wei YM, Tian ZQ, Li JF. Angew Chem Int Ed, 2020, 59: 23554–23558

    Article  CAS  Google Scholar 

  78. Wang G. Sci China Chem, 2020, 63: 1023–1024

    Article  CAS  Google Scholar 

  79. Li L, Sun Y, Xie Y. Sci China Chem, 2022, 65: 425–427

    Article  CAS  Google Scholar 

  80. Zhao Y, Zhang XG, Bodappa N, Yang WM, Liang Q, Radjenovica PM, Wang YH, Zhang YJ, Dong JC, Tian ZQ, Li JF. Energy Environ Sci, 2022, 15: 3968–3977

    Article  CAS  Google Scholar 

  81. Shao F, Wong JK, Low QH, Iannuzzi M, Li J, Lan J. Proc Natl Acad Sci USA, 2022, 119: e2118166119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Shao F, Xia Z, You F, Wong JK, Low QH, Xiao H, Yeo BS. Angew Chem Int Ed, 2023, 62: e202214210

    Article  CAS  Google Scholar 

  83. Vidal-Iglesias FJ, Solla-Gullón J, Rodriguez P, Herrero E, Montiel V, Feliu JM, Aldaz A. Electrochem Commun, 2004, 6: 1080–1084

    Article  CAS  Google Scholar 

  84. Solla-Gullón J, Vidal-Iglesias FJ, López-Cudero A, Garnier E, Feliu JM, Aldaz A. Phys Chem Chem Phys, 2008, 10: 3689–3698

    Article  PubMed  Google Scholar 

  85. Martınez-Rodrıguez RA, Vidal-Iglesias FJ, Solla-Gullón J, Cabrera CR, Feliu JM. J Am Chem Soc, 2014, 136: 1280–1283

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFB1505800), the National Natural Science Foundation of China (21925404, 22005130, and 21991151), and the China Postdoctoral Science Foundation (BX20220187).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Yu or Jian-Feng Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, QF., Yu, J., Dong, JC. et al. Recent advances in Raman spectroelectrochemistry on single-crystal surfaces. Sci. China Chem. 66, 3360–3371 (2023). https://doi.org/10.1007/s11426-023-1682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1682-x

Keywords

Navigation