Skip to main content
Log in

Divergent synthesis of chiral amines via Ni-catalyzed chemo- and enantioselective hydrogenation of alkynone imines

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ligand-mediated nickel-catalyzed asymmetric hydrogenation of alkynone imines has been achieved. By using Ni(OAc)2·4H2O/(S, S)-Ph-BPE complex as a catalyst, the chemo- and enantioselective hydrogenation of alkynone imines occurred efficiently to afford chiral propargyl amines with high yields and excellent enantioselectivities (up to 99% yield, >99% ee), leaving the readily reducible alkynyl group intact. Both the C=N and C≡C bonds of alkynone imines were hydrogenated efficiently in the presence of Ni(OAc)2·4H2O and Josiphos SL-J011-1, furnishing unfunctionalized chiral imines efficiently (up to 99% yield, >99% ee). The (Z)-allylamines and (E)-allylamines were also efficiently prepared from alkynone imines by the combination of the different catalytic systems. The preliminary mechanism study revealed that the reduction of alkynone imines was a stepwise process and the C=N bonds were preferably hydrogenated in the complete reduction of alkynone imines. The synthetic utility of this method was demonstrated by its application in the late-stage modification of the antiviral drug Zidovudine and the concise synthesis of chiral dibenzoazepine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nugent TC. Chiral Amine Synthesis: Methods, Developments and Applications. Weinheim: Wiley-VCH, 2010

    Book  Google Scholar 

  2. Gu YG, Weitzberg M, Clark RF, Xu X, Li Q, Zhang T, Hansen TM, Liu G, Xin Z, Wang X, Wang R, McNally T, Camp H, Beutel BA, Sham HL. J Med Chem, 2006, 49: 3770–3773

    Article  CAS  PubMed  Google Scholar 

  3. Gilligan PJ, Clarke T, He L, Lelas S, Li YW, Heman K, Fitzgerald L, Miller K, Zhang G, Marshall A, Krause C, McElroy JF, Ward K, Zeller K, Wong H, Bai S, Saye J, Grossman S, Zaczek R, Arneric SP, Hartig P, Robertson D, Trainor G. J Med Chem, 2009, 52: 3084–3092

    Article  CAS  PubMed  Google Scholar 

  4. Tang P, Wang H, Zhang W, Chen FE. Green Synthesis Catal, 2020, 1: 26–41

    Article  Google Scholar 

  5. Shan Y, Su L, Zhao Z, Chen D. Adv Synth Catal, 2020, 363: 906–923

    Article  Google Scholar 

  6. Wang C, Xiao J. Stereoselective Formation of Amines. Li W, Zhang X, eds. Berlin: Springer, 2014. 261–282

    Google Scholar 

  7. Afanasyev OI, Kuchuk E, Usanov DL, Chusov D. Chem Rev, 2019, 119: 11857–11911

    Article  CAS  PubMed  Google Scholar 

  8. Irrgang T, Kempe R. Chem Rev, 2020, 120: 9583–9674

    Article  CAS  PubMed  Google Scholar 

  9. Cabré A, Verdaguer X, Riera A. Chem Rev, 2022, 122: 269–339

    Article  PubMed  Google Scholar 

  10. Trowbridge A, Walton SM, Gaunt MJ. Chem Rev, 2020, 120: 2613–2692

    Article  CAS  PubMed  Google Scholar 

  11. Tian Y, Hu L, Wang YZ, Zhang X, Yin Q. Org Chem Front, 2021, 8: 2328–2342

    Article  CAS  Google Scholar 

  12. de Vries JG, Mršić N. Catal Sci Technol, 2011, 1: 727–735

    Article  Google Scholar 

  13. Tian J, Li W, Li R, He L, Lv H. Chin Chem Lett, 2021, 32: 4038–4040

    Article  CAS  Google Scholar 

  14. Reid JP, Goodman JM. J Am Chem Soc, 2016, 138: 7910–7917

    Article  CAS  PubMed  Google Scholar 

  15. Blay G, Cardona L, Climent E, Pedro J. Angew Chem Int Ed, 2008, 47: 5593–5596

    Article  CAS  Google Scholar 

  16. Tian X, Xu X, Jing T, Kang Z, Hu W. Green Synthesis Catal, 2021, 2: 337–344

    Article  Google Scholar 

  17. Liu Y, Wang L, Li Y, Ma B, Chen GQ, Zhang X. Green Synthesis Catal, 2022, 3: 298–301

    Article  Google Scholar 

  18. Xiao X, Xu K, Gao ZH, Zhu ZH, Ye C, Zhao B, Luo S, Ye S, Zhou YG, Xu S, Zhu SF, Bao H, Sun W, Wang X, Ding K. Sci China Chem, 2023, 66: 1553–1633

    Article  CAS  Google Scholar 

  19. Zhang J, Wang YY, Sun H, Li SY, Xiang SH, Tan B. Sci China Chem, 2020, 63: 47–54

    Article  CAS  Google Scholar 

  20. Diéguez M, Claver C, Margalef J. Chapter Three-Asymmetric Hydrogenation of Imines. Vol. 68. New York: Academic Press, 2021. 205–289

    Google Scholar 

  21. Blaser HU, Malan C, Pugin B, Spindler F, Steiner H, Studer M. Adv Synthesis Catal, 2003, 345: 103–151

    Article  CAS  Google Scholar 

  22. Tang W, Zhang X. Chem Rev, 2003, 103: 3029–3070

    Article  CAS  PubMed  Google Scholar 

  23. Zhang W, Chi Y, Zhang X. Acc Chem Res, 2007, 40: 1278–1290

    Article  CAS  PubMed  Google Scholar 

  24. Fleury-Brégeot N, de la Fuente V, Castillón S, Claver C. ChemCatChem, 2010, 2: 1346–1371

    Article  Google Scholar 

  25. Wang C, Villa-Marcos B, Xiao J. Chem Commun, 2011, 47: 9773–9785

    Article  CAS  Google Scholar 

  26. Xie JH, Zhu SF, Zhou QL. Chem Rev, 2011, 111: 1713–1760

    Article  CAS  PubMed  Google Scholar 

  27. Ager DJ, de Vries AHM, de Vries JG. Chem Soc Rev, 2012, 41: 3340–3380

    Article  CAS  PubMed  Google Scholar 

  28. Yu Z, Jin W, Jiang Q. Angew Chem Int Ed, 2012, 51: 6060–6072

    Article  CAS  Google Scholar 

  29. Xie J, Zhou Q. Acta Chim Sin, 2012, 70: 1427–1438

    Article  CAS  Google Scholar 

  30. Chen QA, Ye ZS, Duan Y, Zhou YG. Chem Soc Rev, 2013, 42: 497–511

    Article  CAS  PubMed  Google Scholar 

  31. Etayo P, Vidal-Ferran A. Chem Soc Rev, 2013, 42: 728–754

    Article  CAS  PubMed  Google Scholar 

  32. Hopmann KH, Bayer A. Coord Chem Rev, 2014, 268: 59–82

    Article  CAS  Google Scholar 

  33. Echeverria PG, Ayad T, Phansavath P, Ratovelomanana-Vidal V. Synthesis, 2016, 48: 2523–2539

    Article  CAS  Google Scholar 

  34. Zhang Z, Butt NA, Zhang W. Chem Rev, 2016, 116: 14769–14827

    Article  CAS  PubMed  Google Scholar 

  35. Seo CSG, Morris RH. Organometallics, 2019, 38: 47–65

    Article  CAS  Google Scholar 

  36. Li B-B, Zhang J, Zheng G-W. Green Synth Catal, 2021, 2: 341–345

    Google Scholar 

  37. Yang Q, Shang G, Gao W, Deng J, Zhang X. Angew Chem Int Ed, 2006, 45: 3832–3835

    Article  CAS  Google Scholar 

  38. Zhu SF, Xie JB, Zhang YZ, Li S, Zhou QL. J Am Chem Soc, 2006, 128: 12886–12891

    Article  CAS  PubMed  Google Scholar 

  39. Han Z, Wang Z, Zhang X, Ding K. Angew Chem Int Ed, 2009, 48: 5345–5349

    Article  CAS  Google Scholar 

  40. Li W, Hou G, Chang M, Zhang X. Adv Synth Catal, 2009, 351: 3123–3127

    Article  CAS  Google Scholar 

  41. Mršić N, Minnaard AJ, Feringa BL, Vries JG. J Am Chem Soc, 2009, 131: 8358–8359

    Article  PubMed  Google Scholar 

  42. Chen F, Wang T, He Y, Ding Z, Li Z, Xu L, Fan QH. Chem Eur J, 2011, 17: 1109–1113

    Article  CAS  PubMed  Google Scholar 

  43. Zhou XY, Bao M, Zhou YG. Adv Synth Catal, 2011, 353: 84–88

    Article  CAS  Google Scholar 

  44. Arai N, Utsumi N, Matsumoto Y, Murata K, Tsutsumi K, Ohkuma T. Adv Synth Catal, 2012, 354: 2089–2095

    Article  CAS  Google Scholar 

  45. Hou CJ, Wang YH, Zheng Z, Xu J, Hu XP. Org Lett, 2012, 14: 3554–3557

    Article  CAS  PubMed  Google Scholar 

  46. Tang W, Johnston S, Iggo JA, Berry NG, Phelan M, Lian L, Bacsa J, Xiao J. Angew Chem Int Ed, 2013, 52: 1668–1672

    Article  CAS  Google Scholar 

  47. Guo C, Sun DW, Yang S, Mao SJ, Xu XH, Zhu SF, Zhou QL. J Am Chem Soc, 2015, 137: 90–93

    Article  CAS  PubMed  Google Scholar 

  48. Yang Z, Chen F, He Y, Yang N, Fan QH. Angew Chem Int Ed, 2016, 55: 13863–13866

    Article  CAS  Google Scholar 

  49. Chen J, Zhang Z, Li B, Li F, Wang Y, Zhao M, Gridnev ID, Imamoto T, Zhang W. Nat Commun, 2018, 9: 5000

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hu X, Hu X. Adv Synth Catal, 2019, 361: 5063–5068

    Article  CAS  Google Scholar 

  51. Johannsen M, Jørgensen KA. Chem Rev, 1998, 98: 1689–1708

    Article  CAS  PubMed  Google Scholar 

  52. Hoepping A, Johnson KM, George C, Flippen-Anderson J, Kozikowski AP. J Med Chem, 2000, 43: 2064–2071

    Article  CAS  PubMed  Google Scholar 

  53. Trost BM, Crawley ML. Chem Rev, 2003, 103: 2921–2944

    Article  CAS  PubMed  Google Scholar 

  54. Davidson MH, McDonald FE. Org Lett, 2004, 6: 1601–1603

    Article  CAS  PubMed  Google Scholar 

  55. Trost BM, Chung CK, Pinkerton AB. Angew Chem Int Ed, 2004, 43: 4327–4329

    Article  CAS  Google Scholar 

  56. Fleming JJ, Du Bois J. J Am Chem Soc, 2006, 128: 3926–3927

    Article  CAS  PubMed  Google Scholar 

  57. Zhao X, Zhang F, Liu K, Zhang X, Lv H. Org Lett, 2019, 21: 8966–8969

    Article  CAS  PubMed  Google Scholar 

  58. Hu Y, Zhang Z, Liu Y, Zhang W. Angew Chem Int Ed, 2021, 60: 16989–16993

    Article  CAS  Google Scholar 

  59. Kang Q, Zhao ZA, You SL. Org Lett, 2008, 10: 2031–2034

    Article  CAS  PubMed  Google Scholar 

  60. Chen MW, Wu B, Chen ZP, Shi L, Zhou YG. Org Lett, 2016, 18: 4650–4653

    Article  CAS  PubMed  Google Scholar 

  61. Fan D, Hu Y, Jiang F, Zhang Z, Zhang W. Adv Synth Catal, 2018, 360: 2228–2232

    Article  CAS  Google Scholar 

  62. Chen MW, Yang Q, Deng Z, Zhou Y, Ding Q, Peng Y. J Org Chem, 2018, 83: 8688–8694

    Article  CAS  PubMed  Google Scholar 

  63. Miyagawa M, Takashima K, Akiyama T. Synlett, 2018, 29: 1607–1610

    Article  CAS  Google Scholar 

  64. {Selected reviews on abundant metal catalyzed asymmetric hydrogenation, see:}

  65. Zhang Z, Butt NA, Zhou M, Liu D, Zhang W. Chin J Chem, 2018, 36: 443–454

    Article  CAS  Google Scholar 

  66. Wen J, Wang F, Zhang X. Chem Soc Rev, 2021, 50: 3211–3237

    Article  CAS  PubMed  Google Scholar 

  67. Cabré A, Verdaguer X, Riera A. Chem Rev, 2022, 122: 269–339

    Article  PubMed  Google Scholar 

  68. Garbe M, Junge K, Walker S, Wei Z, Jiao H, Spannenberg A, Bachmann S, Scalone M, Beller M. Angew Chem Int Ed, 2017, 56: 11237–11241

    Article  CAS  Google Scholar 

  69. Widegren MB, Harkness GJ, Slawin AMZ, Cordes DB, Clarke ML. Angew Chem Int Ed, 2017, 56: 5825–5828

    Article  CAS  Google Scholar 

  70. Zirakzadeh A, de Aguiar SRMM, Stöger B, Widhalm M, Kirchner K. ChemCatChem, 2017, 9: 1744–1748

    Article  CAS  Google Scholar 

  71. Zhang GY, Ruan SH, Li YY, Gao JX. Chin Chem Lett, 2021, 32: 1415–1418

    Article  CAS  Google Scholar 

  72. Sui-Seng C, Freutel F, Lough A, Morris R. Angew Chem Int Ed, 2008, 47: 940–943

    Article  CAS  Google Scholar 

  73. Morris RH. Chem Soc Rev, 2009, 38: 2282–2291

    Article  CAS  PubMed  Google Scholar 

  74. Zhou S, Fleischer S, Junge K, Das S, Addis D, Beller M. Angew Chem Int Ed, 2010, 49: 8121–8125

    Article  CAS  Google Scholar 

  75. Li Y, Yu S, Wu X, Xiao J, Shen W, Dong Z, Gao J. J Am Chem Soc, 2014, 136: 4031–4039

    Article  CAS  PubMed  Google Scholar 

  76. Bauer I, Knölker HJ. Chem Rev, 2015, 115: 3170–3387

    Article  CAS  PubMed  Google Scholar 

  77. Monfette S, Turner ZR, Semproni SP, Chirik PJ. J Am Chem Soc, 2012, 134: 4561–4564

    Article  CAS  PubMed  Google Scholar 

  78. Friedfeld MR, Shevlin M, Hoyt JM, Krska SW, Tudge MT, Chirik PJ. Science, 2013, 342: 1076–1080

    Article  CAS  PubMed  Google Scholar 

  79. Chen J, Chen C, Ji C, Lu Z. Org Lett, 2016, 18: 1594–1597

    Article  CAS  PubMed  Google Scholar 

  80. Friedfeld MR, Shevlin M, Margulieux GW, Campeau LC, Chirik PJ. J Am Chem Soc, 2016, 138: 3314–3324

    Article  CAS  PubMed  Google Scholar 

  81. Du T, Wang B, Wang C, Xiao J, Tang W. Chin Chem Lett, 2021, 32: 1241–1244

    Article  CAS  Google Scholar 

  82. Selected examples on Ni-catalyzed asymmetric hydrogenation

  83. Hamada Y, Koseki Y, Fujii T, Maeda T, Hibino T, Makino K. Chem Commun, 2008, 6206

  84. Hibino T, Makino K, Sugiyama T, Hamada Y. ChemCatChem, 2009, 1: 237–240

    Article  CAS  Google Scholar 

  85. Yang P, Xu H, Zhou JS. Angew Chem Int Ed, 2014, 53: 12210–12213

    Article  CAS  Google Scholar 

  86. Shimizu H, Igarashi D, Kuriyama W, Yusa Y, Sayo N, Saito T. Org Lett, 2007, 9: 1655–1657

    Article  CAS  PubMed  Google Scholar 

  87. Krabbe SW, Hatcher MA, Bowman RK, Mitchell MB, McClure MS, Johnson JS. Org Lett, 2013, 15: 4560–4563

    Article  CAS  PubMed  Google Scholar 

  88. You C, Li X, Gong Q, Wen J, Zhang X. J Am Chem Soc, 2019, 141: 14560–14564

    Article  CAS  PubMed  Google Scholar 

  89. Hu Y, Chen J, Li B, Zhang Z, Gridnev ID, Zhang W. Angew Chem Int Ed, 2020, 59: 5371–5375

    Article  CAS  Google Scholar 

  90. Guo S, Zhou JS. Org Lett, 2016, 18: 5344–5347

    Article  CAS  PubMed  Google Scholar 

  91. Shevlin M, Friedfeld MR, Sheng H, Pierson NA, Hoyt JM, Campeau LC, Chirik PJ. J Am Chem Soc, 2016, 138: 3562–3569

    Article  CAS  PubMed  Google Scholar 

  92. Yang P, Lim LH, Chuanprasit P, Hirao H, Zhou JS. Angew Chem Int Ed, 2016, 55: 12083–12087

    Article  CAS  Google Scholar 

  93. Deng C, Liu J, Luo J, Gan L, Deng J, Fu Y. Angew Chem Int Ed, 2022, 61: e202115983

    Article  CAS  Google Scholar 

  94. Li B, Chen J, Liu D, Gridnev ID, Zhang W. Nat Chem, 2022, 14: 920–927

    Article  CAS  PubMed  Google Scholar 

  95. Wei H, Chen H, Chen J, Gridnev ID, Zhang W. Angew Chem Int Ed, 2023, 62: e202214990

    Article  CAS  Google Scholar 

  96. Gao W, Lv H, Zhang T, Yang Y, Chung LW, Wu YD, Zhang X. Chem Sci, 2017, 8: 6419–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li X, You C, Li S, Lv H, Zhang X. Org Lett, 2017, 19: 5130–5133

    Article  CAS  PubMed  Google Scholar 

  98. Long J, Gao W, Guan Y, Lv H, Zhang X. Org Lett, 2018, 20: 5914–5917

    Article  CAS  PubMed  Google Scholar 

  99. Guan YQ, Han Z, Li X, You C, Tan X, Lv H, Zhang X. Chem Sci, 2019, 10: 252–256

    Article  CAS  PubMed  Google Scholar 

  100. The absolute configuration of 2a was determined as S by comparing the specific rotation of 2a with the reported data in Ref. 2j. All the other configurations of chiral propargyl amines are uncertain and based on the assumption that the configuration follows that of 2a

  101. Khan MA, Javaid K, Wadood A, Jamal A, Batool F, Fazal-ur-Rehman S, Basha FZ, Choudhary MI. Med Chem, 2017, 13: 698–704

    Article  CAS  PubMed  Google Scholar 

  102. Qiu J, Chen W, Jiang Y, Chen J, Zhang Y, Gu X. MedChemComm, 2018, 9: 1826–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen XY, Zhang CS, Yi L, Gao ZH, Wang ZX, Ye S. CCS Chem, 2019, 1: 343–351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071188, 21871212), the Open Foundation of CAS Key Laboratory of Molecular Recognition and Function, and the “Double First-Class” Project of Shihezi University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin He or Hui Lv.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Liu, K., He, L. et al. Divergent synthesis of chiral amines via Ni-catalyzed chemo- and enantioselective hydrogenation of alkynone imines. Sci. China Chem. 66, 3186–3192 (2023). https://doi.org/10.1007/s11426-023-1670-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1670-8

Navigation