Skip to main content
Log in

Understanding the sluggish and highly variable transport kinetics of lithium ions in LiFePO4

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

LiFePO4, one of the mainstream cathode materials of current EV batteries, exhibits experimental diffusion coefficients (Dc) of Li+ which are not only several orders of magnitude lower than those predicted by the ionic hopping barriers obtained from theoretical calculations and spectroscopic measurements, but also span several orders from 10−14 to 10−18 cm2 s−1 under different states of charge (SOC) and the charging rates (C-rates). Atomic level understanding of such sluggishness and diversity of Li+ transport kinetics would be of significance in improving the rate performance of LiFePO4 through material and operation optimization but remain challenging. Herein, we show that the high sensitivity of Li hopping barriers on the local Li–Li coordination environments (numbers and configurations) plays a key role in the ion transport kinetics. This is due a neural network-based deep potential (DP) which allows accurate and efficient calculation of hopping barriers of Li+ in LiFePO4 with various Li–Li coordination environments, with which the kinetic Monte-Carlo (KMC) method was employed to determine the Dc values at various C-rates and SOC across a broad spectrum. Especially, an accelerated KMC simulation strategy is proposed to obtain the Dc values under a wide range of SOC at low C-rates, which agree well with that obtained from the galvanostatic intermittent titration technique (GITT). The present study provides accurate descriptions of Li+ transport kinetics at both very high and low C-rates, which remains challenging to experiments and first-principles calculations, respectively. Finally, it is revealed that the gradient distributions of Li+ density along the diffusion path result in great asymmetry in the barriers of the forward and backward hopping, causing very slow diffusion of Li+ and the diverse variation of Dc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang WJ. J Power Sources, 2011, 196: 2962–2970

    Article  CAS  Google Scholar 

  2. Yang Z, Dai Y, Wang S, Yu J. J Mater Chem A, 2016, 4: 18210–18222

    Article  CAS  Google Scholar 

  3. Chen SP, Lv D, Chen J, Zhang YH, Shi FN. Energy Fuels, 2022, 36: 1232–1251

    Article  CAS  Google Scholar 

  4. Geng J, Zhang S, Hu X, Ling W, Peng X, Zhong S, Liang F, Zou Z. Ionics, 2022, 28: 4899–4922

    Article  CAS  Google Scholar 

  5. Kumar J, Neiber RR, Park J, Soomro RA, Greene GW, Mazari SA, Seo HY, Lee JH, Shon M, Chang DW, Cho KY. Chem Eng J, 2022, 431: 133993

    Article  CAS  Google Scholar 

  6. Wang L, Qiu J, Wang X, Chen L, Cao G, Wang J, Zhang H, He X. eScience, 2022, 2: 125–137

    Article  Google Scholar 

  7. Amin R, Maier J, Balaya P, Chen DP, Lin CT. Solid State Ion, 2008, 179: 1683–1687

    Article  CAS  Google Scholar 

  8. Li J, Yao W, Martin S, Vaknin D. Solid State Ion, 2008, 179: 2016–2019

    Article  CAS  Google Scholar 

  9. Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O. Electrochim Acta, 2009, 54: 4631–4637

    Article  CAS  Google Scholar 

  10. Malik R, Abdellahi A, Ceder G. J Electrochem Soc, 2013, 160: A3179–A3197

    Article  CAS  Google Scholar 

  11. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. J Electrochem Soc, 2005, 152: A607

    Article  CAS  Google Scholar 

  12. Cho YD, Fey GTK, Kao HM. J Power Sources, 2009, 189: 256–262

    Article  CAS  Google Scholar 

  13. Iarchuk AR, Nikitina VA, Karpushkin EA, Sergeyev VG, Antipov EV, Stevenson KJ, Abakumov AM. ChemElectroChem, 2019, 6: 5090–5100

    Article  CAS  Google Scholar 

  14. Wang C, Yuan X, Tan H, Jian S, Ma Z, Zhao J, Wang X, Chen D, Dong Y. Coatings, 2021, 11: 1137

    Article  CAS  Google Scholar 

  15. Huang H, Yin SC, Nazar LF. Electrochem Solid-State Lett, 2001, 4: A170

    Article  CAS  Google Scholar 

  16. Delacourt C, Poizot P, Levasseur S, Masquelier C. Electrochem SolidState Lett, 2006, 9: A352

    Article  CAS  Google Scholar 

  17. Gaberscek M, Dominko R, Jamnik J. Electrochem Commun, 2007, 9: 2778–2783

    Article  CAS  Google Scholar 

  18. Zhao N, Li Y, Zhao X, Zhi X, Liang G. J Alloys Compd, 2016, 683: 123–132

    Article  CAS  Google Scholar 

  19. Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J. J Power Sources, 2009, 193: 841–845

    Article  CAS  Google Scholar 

  20. Yi TF, Li XY, Liu H, Shu J, Zhu YR, Zhu RS. Ionics, 2012, 18: 529–539

    Article  CAS  Google Scholar 

  21. Zhang H. Int J Electrochem Sci, 2020, 15: 12041–12067

    Article  CAS  Google Scholar 

  22. Zhang B, Ma X, Hou W, Yuan W, He L, Yang O, Liu Y, Wang J, Xu Y. ACS Appl Energy Mater, 2022, 5: 14712–14719

    Article  CAS  Google Scholar 

  23. Ellis B, Perry LK, Ryan DH, Nazar LF. J Am Chem Soc, 2006, 128: 11416–11422

    Article  CAS  PubMed  Google Scholar 

  24. Tao G. J Phys Chem C, 2016, 120: 6938–6952

    Article  CAS  Google Scholar 

  25. Sugiyama J, Nozaki H, Harada M, Kamazawa K, Ofer O, Månsson M, Brewer JH, Ansaldo EJ, Chow KH, Ikedo Y, Miyake Y, Ohishi K, Watanabe I, Kobayashi G, Kanno R. Phys Rev B, 2011, 84: 054430

    Article  Google Scholar 

  26. Sugiyama J, Nozaki H, Harada M, Kamazawa K, Ikedo Y, Miyake Y, Ofer O, Månsson M, Ansaldo EJ, Chow KH, Kobayashi G, Kanno R. Phys Rev B, 2012, 85: 054111

    Article  Google Scholar 

  27. Johnson ID, Ashton TE, Blagovidova E, Smales GJ, Löbke M, Baker PJ, Corr SA, Darr JA. Sci Rep, 2018, 8: 4114

    Article  PubMed  PubMed Central  Google Scholar 

  28. Forslund OK, Toft-Petersen R, Vaknin D, van Well N, Telling M, Sassa Y, Sugiyama J, Månsson M, Juranyi F. 2021, Preprint at https://doi.org/10.48550/arXiv.2111.11941

  29. Franger S, Le Cras F, Bourbon C, Rouault H. Electrochem Solid-State Lett, 2002, 5: A231

    Article  CAS  Google Scholar 

  30. Prosini P. Solid State Ion, 2002, 148: 45–51

    Article  CAS  Google Scholar 

  31. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQ. J Power Sources, 2006, 159: 717–720

    Article  CAS  Google Scholar 

  32. Churikov AV, Ivanishchev AV, Ivanishcheva IA, Sycheva VO, Khasanova NR, Antipov EV. Electrochim Acta, 2010, 55: 2939–2950

    Article  CAS  Google Scholar 

  33. Tang K, Yu X, Sun J, Li H, Huang X. Electrochim Acta, 2011, 56: 4869–4875

    Article  CAS  Google Scholar 

  34. Morgan D, Van der Ven A, Ceder G. Electrochem Solid-State Lett, 2003, 7: A30

    Article  Google Scholar 

  35. Malik R, Burch D, Bazant M, Ceder G. Nano Lett, 2010, 10: 4123–4127

    Article  CAS  PubMed  Google Scholar 

  36. Dathar GKP, Sheppard D, Stevenson KJ, Henkelman G. Chem Mater, 2011, 23: 4032–4037

    Article  CAS  Google Scholar 

  37. Gao Y, Huang J, Liu Y, Chen S. Chem Sci, 2021, 13: 257–262

    Article  PubMed  PubMed Central  Google Scholar 

  38. Boulfelfel SE, Seifert G, Leoni S. J Mater Chem, 2011, 21: 16365–16372

    Article  CAS  Google Scholar 

  39. Kuss C, Liang G, Schougaard SB. J Mater Chem, 2012, 22: 24889–24893

    Article  CAS  Google Scholar 

  40. Kutteh R, Avdeev M. J Phys Chem C, 2014, 118: 11203–11214

    Article  CAS  Google Scholar 

  41. Friederich P, Häse F, Proppe J, Aspuru-Guzik A. Nat Mater, 2021, 20: 750–761

    Article  CAS  PubMed  Google Scholar 

  42. Seponer J, Leszczynski J, Hobza P. J Comput Chem, 1996, 17: 841–850

    Article  Google Scholar 

  43. Willaime F, Fu CC, Marinica MC, Dalla Torre J. Nucl Instruments Methods Phys Res Sect B-Beam Interactions Mater Atoms, 2005, 228: 92–99

    Article  CAS  Google Scholar 

  44. Behler J. Angew Chem Int Ed, 2017, 56: 12828–12840

    Article  CAS  Google Scholar 

  45. Deringer VL, Caro MA, Csányi G. Adv Mater, 2019, 31: 1902765

    Article  CAS  Google Scholar 

  46. Han J, Zhang L, Car R, E W. CiCP, 2018, 23: 629–639

    Article  Google Scholar 

  47. Zhang L, Han J, Wang H, Car R, E W. Phys Rev Lett, 2018, 120: 143001

    Article  CAS  PubMed  Google Scholar 

  48. Zhang L, Han J, Wang H, Saidi W, Car R. Advances in Neural Information Processing Systems, 2018, 31: 4441–4451

    Google Scholar 

  49. Wang H, Zhang L, Han J, E W. Comput Phys Commun, 2018, 228: 178–184

    Article  CAS  Google Scholar 

  50. Andrade MFC, Ko HY, Zhang L, Car R, Selloni A. Chem Sci, 2020, 11: 2335–2341

    Article  Google Scholar 

  51. Zeng J, Cao L, Xu M, Zhu T, Zhang JZH. Nat Commun, 2020, 11: 5713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huang J, Zhang L, Wang H, Zhao J, Cheng J, E W. J Chem Phys, 2021, 154: 094703

    Article  CAS  PubMed  Google Scholar 

  53. Zhang L, Wang H, Car R, E W. Phys Rev Lett, 2021, 126: 236001

    Article  CAS  PubMed  Google Scholar 

  54. Fan L, Ji Y, Wang G, Chen J, Chen K, Liu X, Wen Z. J Am Chem Soc, 2022, 144: 7224–7235

    Article  CAS  PubMed  Google Scholar 

  55. Henkelman G, Uberuaga BP, Jónsson H. J Chem Phys, 2000, 113: 9901–9904

    Article  CAS  Google Scholar 

  56. Bronsted JN. Chem Rev, 1928, 5: 231–338

    Article  CAS  Google Scholar 

  57. Evans MG, Polanyi M. Trans Faraday Soc, 1938, 34: 11–24

    Article  CAS  Google Scholar 

  58. Voter AF, Introduction to the Kinetic Monte Carlo Method. In Radiation Effects in Solids, Heidelberg: Springer, 2007, 1–23

    Google Scholar 

  59. Xiao P, Henkelman G. ACS Nano, 2018, 12: 844–851

    Article  CAS  PubMed  Google Scholar 

  60. Larsen AH, Mortensen JJ, Blomqvist J, Castelli IE, Christensen R, Dulak M, Friis J, Groves MN, Hammer B, Hargus C, Hermes ED, Jennings PC, Jensen PB, Kermode J, Kitchin JR, Kolsbjerg EL, Kubal J, Kaasbjerg K, Lysgaard S, Maronsson JB, Maxson T, Olsen T, Pastewka L, Peterson A, Rostgaard C, Schietz J, Schütt O, Strange M, Thygesen KS, Vegge T, Vilhelmsen L, Walter M, Zeng Z, Jacobsen KW. JPhys-Condens Matter, 2017, 29: 273002

    Article  Google Scholar 

  61. Bai P, Cogswell DA, Bazant MZ. Nano Lett, 2011, 11: 4890–4896

    Article  CAS  PubMed  Google Scholar 

  62. Yang J, Tse JS. J Phys Chem A, 2011, 115: 13045–13049

    Article  CAS  PubMed  Google Scholar 

  63. Hu J, Huang W, Yang L, Pan F. Nanoscale, 2020, 12: 15036–15044

    Article  CAS  PubMed  Google Scholar 

  64. Zhou F, Maxisch T, Ceder G. Phys Rev Lett, 2006, 97: 155704

    Article  PubMed  Google Scholar 

  65. Exner KS. ChemElectroChem, 2018, 5: 3243–3248

    Article  CAS  Google Scholar 

  66. Bhandari A, Bhattacharya J, Pala RGS. J Phys Chem C, 2020, 124: 9170–9177

    Article  CAS  Google Scholar 

  67. Zhu H, Russell JA, Fang Z, Barnes P, Li L, Efaw CM, Muenzer A, May J, Hamal K, Cheng IF, Davis PH, Dufek EJ, Xiong H. Small, 2021, 17: 2105292

    Article  CAS  Google Scholar 

  68. Zhang X, Yang S, Tang S, Li S, Hao D, Shen D. Comput Mater Sci, 2022, 202: 110983

    Article  CAS  Google Scholar 

  69. Fisher CAJ, Prieto VMH, Islam MS. Chem Mater, 2008, 20: 5907–5915

    Article  CAS  Google Scholar 

  70. Nakayama M, Yamada S, Jalem R, Kasuga T. Solid State Ion, 2016, 286: 40–44

    Article  CAS  Google Scholar 

  71. Kishida I, Koyama Y, Kuwabara A, Yamamoto T, Oba F, Tanaka I. J Phys Chem B, 2006, 110: 8258–8262

    Article  CAS  PubMed  Google Scholar 

  72. Nakayama M, Kaneko M, Wakihara M. Phys Chem Chem Phys, 2012, 14: 13963–13970

    Article  CAS  PubMed  Google Scholar 

  73. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F. Nat Mater, 2008, 7: 665–671

    Article  CAS  PubMed  Google Scholar 

  74. Dreyer W, Jamnik J, Guhlke C, Huth R, Moskon J, Gaberscek M. Nat Mater, 2010, 9: 448–453

    Article  CAS  PubMed  Google Scholar 

  75. Chueh WC, El Gabaly F, Sugar JD, Bartelt NC, McDaniel AH, Fenton KR, Zavadil KR, Tyliszczak T, Lai W, McCarty KF. Nano Lett, 2013, 13: 866–872

    Article  CAS  PubMed  Google Scholar 

  76. Agrawal S, Bai P. Adv Energy Mater, 2021, 11: 2003344

    Article  CAS  Google Scholar 

  77. Agrawal S, Bai P. Cell Rep Phys Sci, 2022, 3: 100854

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (22272122, 21832004 and 21673163). The numerical calculations in this paper have been carried out on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengli Chen.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wang, X., Li, P. et al. Understanding the sluggish and highly variable transport kinetics of lithium ions in LiFePO4. Sci. China Chem. 66, 3297–3306 (2023). https://doi.org/10.1007/s11426-023-1662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1662-9

Navigation