Skip to main content
Log in

Inductive effect of Ti-doping in Fe2O3 enhances the photoelectrochemical water oxidation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Hematite (α-Fe2O3) is an ideal oxide semiconductor candidate for photoelectrochemical (PEC) water splitting. Doping of Fe2O3 is known to benefit the PEC water oxidation efficiency, but despite extensive research efforts, the underlying mechanism still remains elusive. In this work, we report a comprehensive study on the relationship between the electronic structure, interfacial reaction kinetics and PEC activity of Ti-doped Fe2O3 photoanodes. The results show that the interfacial charge transfer efficiency at the Fe2O3/electrolyte interface is the main factor in the significant increase of the PEC activity of doped Fe2O3. Electrochemical impedance spectroscopy reveals that the interfacial charge transfer efficiency is determined by energy overlap between the water oxidation potential and energy distribution of an intermediate surface state that has been identified as FeIV=O groups on Fe2O3 surface generated during PEC process. Interestingly, the potential energy distribution of this intermediate surface state can be modulated by Ti doping, and a shift towards a more positive potential of the intermediate surface state increases the overlap with the water oxidation potential and thus enhances the kinetics of charge transfer for PEC water splitting. The origin of such potential energy modulation is traced to the inductive effect from Ti-doping on the Fe3+/Fe4+ redox transition and the Fe-O bond covalency. Our results provide new insight into the mechanism for the doping effect on the PEC water splitting, introducing new strategies to optimize the PEC activity by tuning the redox properties of active metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS. Chem Rev, 2010, 110: 6446–6473

    Article  CAS  PubMed  Google Scholar 

  2. Wu L, Tang D, Xue J, Wang S, Ji H, Chen C, Zhang Y, Zhao J. Sci China Chem, 2023, 66: 896–903

    CAS  Google Scholar 

  3. Zhou B, Li J, Dong X, Yao L. Sci China Chem, 2023, 66: 739–754

    CAS  Google Scholar 

  4. Grätzel M. Nature, 2001, 414: 338–344

    Article  PubMed  Google Scholar 

  5. Li C, Luo Z, Wang T, Gong J. Adv Mater, 2018, 30: 1707502

    Article  Google Scholar 

  6. Sivula K, van de Krol R. Nat Rev Mater, 2016, 1: 15010

    Article  CAS  Google Scholar 

  7. Dias P, Vilanova A, Lopes T, Andrade L, Mendes A. Nano Energy, 2016, 23: 70–79

    Article  CAS  Google Scholar 

  8. Warren SC, Voïtchovsky K, Dotan H, Leroy CM, Cornuz M, Stellacci F, Hébert C, Rothschild A, Grätzel M. Nat Mater, 2013, 12: 842–849

    Article  CAS  PubMed  Google Scholar 

  9. Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J. J Am Chem Soc, 2012, 134: 4294–4302

    Article  CAS  PubMed  Google Scholar 

  10. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW. Energy Environ Sci, 2012, 5: 7626–7636

    Article  CAS  Google Scholar 

  11. Zandi O, Hamann TW. J Phys Chem Lett, 2014, 5: 1522–1526

    Article  CAS  PubMed  Google Scholar 

  12. Grave DA, Klotz D, Kay A, Dotan H, Gupta B, Visoly-Fisher I, Rothschild A. J Phys Chem C, 2016, 120: 28961–28970

    Article  CAS  Google Scholar 

  13. Lohaus C, Klein A, Jaegermann W. Nat Commun, 2018, 9: 4309

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zandi O, Hamann TW. Nat Chem, 2016, 8: 778–783

    Article  CAS  PubMed  Google Scholar 

  15. Mesa CA, Francàs L, Yang KR, Garrido-Barros P, Pastor E, Ma Y, Kafizas A, Rosser TE, Mayer MT, Reisner E, Grätzel M, Batista VS, Durrant JR. Nat Chem, 2020, 12: 82–89

    Article  CAS  PubMed  Google Scholar 

  16. Guo S, Hu Z, Zhen M, Gu B, Shen B, Dong F. Appl Catal B-Environ, 2020, 264: 118506

    Article  CAS  Google Scholar 

  17. He S, Yan C, Chen XZ, Wang Z, Ouyang T, Guo ML, Liu ZQ. Appl Catal B-Environ, 2020, 276: 119138

    Article  CAS  Google Scholar 

  18. Li Y, Liu K, Zhang J, Yang J, Huang Y, Tong Y. Ind Eng Chem Res, 2020, 59: 18865–18872

    Article  CAS  Google Scholar 

  19. Miao C, Ji S, Xu G, Liu G, Zhang L, Ye C. ACS Appl Mater Interfaces, 2012, 4: 4428–4433

    Article  CAS  PubMed  Google Scholar 

  20. Hufnagel AG, Hajiyani H, Zhang S, Li T, Kasian O, Gault B, Breitbach B, Bein T, Fattakhova-Rohlfing D, Scheu C, Pentcheva R. Adv Funct Mater, 2018, 28: 1804472

    Article  Google Scholar 

  21. Khan AZ, Kandiel TA, Abdel-Azeim S, Alhooshani K. Sustain Energy Fuels, 2020, 4: 4207–4218

    Article  CAS  Google Scholar 

  22. Monllor-Satoca D, Bärtsch M, Fàbrega C, Genç A, Reinhard S, Andreu T, Arbiol J, Niederberger M, Morante JR. Energy Environ Sci, 2015, 8: 3242–3254

    Article  CAS  Google Scholar 

  23. Zhu Q, Yu C, Zhang X. J Energy Chem, 2019, 35: 30–36

    Article  Google Scholar 

  24. Tang PY, Arbiol J. Nanoscale Horiz, 2019, 4: 1256–1276

    Article  CAS  Google Scholar 

  25. Tang PY, Han LJ, Hegner FS, Paciok P, Biset-Peiró M, Du HC, Wei XK, Jin L, Xie HB, Shi Q, Andreu T, Lira-Cantú M, Heggen M, Dunin-Borkowski RE, López N, Galán-Mascarós JR, Morante JR, Arbiol J. Adv Energy Mater, 2019, 9: 1901836

    Article  Google Scholar 

  26. Malviya KD, Dotan H, Shlenkevich D, Tsyganok A, Mor H, Rothschild A. J Mater Chem A, 2016, 4: 3091–3099

    Article  CAS  Google Scholar 

  27. Glasscock JA, Barnes PRF, Plumb IC, Savvides N. J Phys Chem C, 2007, 111: 16477–16488

    Article  CAS  Google Scholar 

  28. Zhang K, Dong T, Xie G, Guan L, Guo B, Xiang Q, Dai Y, Tian L, Batool A, Jan SU, Boddula R, Thebo AA, Gong JR. ACS Appl Mater Interfaces, 2017, 9: 42723–42733

    Article  CAS  PubMed  Google Scholar 

  29. Zandi O, Klahr BM, Hamann TW. Energy Environ Sci, 2013, 6: 634–642

    Article  CAS  Google Scholar 

  30. Iordanova N, Dupuis M, Rosso KM. J Chem Phys, 2005, 122: 144305

    Article  CAS  PubMed  Google Scholar 

  31. Fu Z, Jiang T, Liu Z, Wang D, Wang L, Xie T. Electrochim Acta, 2014, 129: 358–363

    Article  CAS  Google Scholar 

  32. Deng J, Zhong J, Pu A, Zhang D, Li M, Sun X, Lee ST. J Appl Phys, 2012, 112: 084312

    Article  Google Scholar 

  33. Tian CM, Li WW, Lin YM, Yang ZZ, Wang L, Du YG, Xiao HY, Qiao L, Zhang JY, Chen L, Qi DC, MacManus-Driscoll JL, Zhang KHL. J Phys Chem C, 2020, 124: 12548–12558

    Article  CAS  Google Scholar 

  34. Wang Z, Fan F, Wang S, Ding C, Zhao Y, Li C. RSC Adv, 2016, 6: 85582–85586

    Article  CAS  Google Scholar 

  35. Droubay T, Chambers SA. Phys Rev B, 2001, 64: 205414

    Article  Google Scholar 

  36. Zhao B, Kaspar TC, Droubay TC, McCloy J, Bowden ME, Shutthanandan V, Heald SM, Chambers SA. Phys Rev B, 2011, 84: 245325

    Article  Google Scholar 

  37. Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC. Energy Environ Sci, 2011, 4: 958–964

    Article  CAS  Google Scholar 

  38. Avital YY, Dotan H, Klotz D, Grave DA, Tsyganok A, Gupta B, Kolusheva S, Visoly-Fisher I, Rothschild A, Yochelis A. Nat Commun, 2018, 9: 4060

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lv J, Fan M, Zhang L, Zhou Q, Wang L, Chang Z, Chong R. Talanta, 2022, 237: 122894

    Article  CAS  PubMed  Google Scholar 

  40. Pendlebury SR, Wang X, Le Formal F, Cornuz M, Kafizas A, Tilley SD, Grätzel M, Durrant JR. J Am Chem Soc, 2014, 136: 9854–9857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li J, Chen H, Triana CA, Patzke GR. Angew Chem Int Ed, 2021, 60: 18380–18396

    Article  CAS  Google Scholar 

  42. Villarreal TL, Gómez R, Neumann-Spallart M, Alonso-Vante N, Salvador P. J Phys Chem B, 2004, 108: 15172–15181

    Article  CAS  Google Scholar 

  43. Gao L, Wang P, Chai H, Li S, Jin J, Ma J. Nanoscale, 2022, 14: 17044–17052

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Zhang H, Liu A, Chen C, Song W, Zhao J. J Am Chem Soc, 2018, 140: 3264–3269

    Article  CAS  PubMed  Google Scholar 

  45. Le Formal F, Pastor E, Tilley SD, Mesa CA, Pendlebury SR, Grätzel M, Durrant JR. J Am Chem Soc, 2015, 137: 6629–6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Le Formal F, Tétreault N, Cornuz M, Moehl T, Grätzel M, Sivula K. Chem Sci, 2011, 2: 737–743

    Article  CAS  Google Scholar 

  47. Tang PY, Xie HB, Ros C, Han LJ, Biset-Peiró M, He YM, Kramer W, Rodríguez AP, Saucedo E, Galán-Mascarós JR, Andreu T, Morante JR, Arbiol J. Energy Environ Sci, 2017, 10: 2124–2136

    Article  CAS  Google Scholar 

  48. Li J, Wan W, Triana CA, Chen H, Zhao Y, Mavrokefalos CK, Patzke GR. Nat Commun, 2021, 12: 255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gerischer H. J Phys Chem, 1991, 95: 1356–1359

    Article  CAS  Google Scholar 

  50. Kuznetsov DA, Han B, Yu Y, Rao RR, Hwang J, Román-Leshkov Y, Shao-Horn Y. Joule, 2018, 2: 225–244

    Article  CAS  Google Scholar 

  51. Muraliganth T, Manthiram A. J Phys Chem C, 2010, 114: 15530–15540

    Article  CAS  Google Scholar 

  52. Li K, Xue D. J Phys Chem A, 2006, 110: 11332–11337

    Article  CAS  PubMed  Google Scholar 

  53. Berry FJ, Greaves C, Helgason Ö, McManus J, Palmer HM, Williams RT. J Solid State Chem, 2000, 151: 157–162

    Article  CAS  Google Scholar 

  54. Prévot MS, Jeanbourquin XA, Bourée WS, Abdi F, Friedrich D, van de Krol R, Guijarro N, Le Formal F, Sivula K. Chem Mater, 2017, 29: 4952–4962

    Article  Google Scholar 

  55. Gao Y, Hamann TW. J Phys Chem Lett, 2017, 8: 2700–2704

    Article  CAS  PubMed  Google Scholar 

  56. Shi Q, Murcia-López S, Tang P, Flox C, Morante JR, Bian Z, Wang H, Andreu T. ACS Catal, 2018, 8: 3331–3342

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the funding support by the National Natural Science Foundation of China (22021001). K.H.L Zhang and J.P. Hofmann acknowledge the Mobility Program of the Sino-German Center for Research Promotion (M-0377). This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101030782. F.E. Oropeza thanks the RYC2021-034254-I grant funded by MCIN/AEI/10.13039/501100011033 and European Union “NextGenerationEU/PRTR”. XAS experiments were performed at the CLAESS beamline of the ALBA synchrotron (proposal number AV-2021035069) with the help of the ALBA staff. Giulio Gorni acknowledges financial support from FJC2020-044866-I/MCIN/AEI/10.13039/501100011033 and European Union “NextGenerationEU”/PRTR”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Freddy E. Oropeza or Kelvin H. L. Zhang.

Additional information

Supporting information

The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Conflict of interest

The authors declare no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Wang, Y., Wang, H. et al. Inductive effect of Ti-doping in Fe2O3 enhances the photoelectrochemical water oxidation. Sci. China Chem. 66, 2091–2097 (2023). https://doi.org/10.1007/s11426-023-1650-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1650-4

Navigation