Skip to main content

Advertisement

Log in

Photoelectrochemical water oxidation in α-Fe2O3 thin films enhanced by a controllable wet-chemical Ti-doping strategy and Co–Pi co-catalyst modification

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The poor electrical conductivity, short hole diffusion length, and slow water oxidation reaction kinetics have severely limited the photoelectrochemical performance of the hematite (α-Fe2O3) photoanodes. In this paper, we report a facile wet-chemical approach to prepare the Ti-doping controllable hematite photoanode with subsequent Co–Pi electrocatalysts modification for solar water splitting. By optimizing the Ti-doping in Fe2O3, the Ti–Fe2O3 photoanodes can retain the primary morphology with the pristine Fe2O3 nanostructures, while simultaneously reducing the photogenerated charge carrier recombination rate in the films. Besides, by further decorating with Co–Pi co-catalysts on Ti–Fe2O3 surface, the formed Ti–Fe2O3/Co–Pi photoanode demonstrated an accelerated electrode/electrolyte kinetics during photoelectrochemical water oxidation reaction. As expected, the Ti–Fe2O3/Co–Pi photoanode produced an improved photocurrent density of 0.76 mA/cm2 at 1.23 V vs RHE, which is much higher than the photocurrent density of individual Fe2O3 (0.25 mA/cm2) and Ti–Fe2O3 photoanode (0.51 mA/cm2). This work provides a good insight for designing the composite photoanode to simultaneously enhance the charge transport and surface water oxidation kinetics for efficient solar fuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Sivula, F.L. Formal, M. Grätzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4(4), 432–449 (2011)

    CAS  Google Scholar 

  2. B.Y. Cheng, J.S. Yang, H.W. Cho, J.J. Wu, Fabrication of an efficient BiVO4–TiO2 heterojunction photoanode for photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 8, 20032–20039 (2016)

    CAS  Google Scholar 

  3. C.L. McCroty, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water SPLITTING devices. J. Am. Chem. Soc. 137, 4347–4357 (2015)

    Google Scholar 

  4. X.P. Qi, G.W. She, X. Huang, T.P. Zhang, H.M. Wang, L.X. Mu, W.S. Shi, High-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. Nanoscale 6(6), 3182–3189 (2014)

    CAS  Google Scholar 

  5. J.T. Li, L.W. Wang, Z. Liu, Y.H. Wang, S.L. Wang, Au-modified α-Fe2O3 columnar superstructures assembled with nanoplates and their highly improved acetone sensing properties. J. Alloy. Compd. 728, 944–951 (2017)

    CAS  Google Scholar 

  6. B.Q. Li, Q. Sun, H.S. Fan, M. Cheng, A. Shan, Y.M. Cui, R.M. Wang, Morphology-controlled synthesis of hematite nanocrystals and their optical, magnetic and electrochemical performance. Nanomaterials 8(1), 41 (2018)

    Google Scholar 

  7. W.J. Luo, Z.S. Yang, Z.S. Li, J.Y. Zhang, J.G. Liu, Z.Y. Zhao, Z.Q. Wang, S.C. Yan, T. Yu, Z.G. Zou, Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 4, 4046–4051 (2011)

    CAS  Google Scholar 

  8. G.J. Ai, R. Mo, H. Xu, Q. Chen, S. Yang, H.X. Li, J.X. Zhong, Vertically aligned TiO2/(CdS, CdTe, CdSTe) core/shell nanowire array for photoelectrochemical hydrogen generation. J. Power Sources 280, 5–11 (2015)

    CAS  Google Scholar 

  9. L.F. Pan, J. Kim, M. Mayer, M.K. Son, A. Ummadisingu, J.S. Lee, A. Hagfeldt, J.S. Luo, M. Gratzel, Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat. Catal. 1, 412–420 (2018)

    CAS  Google Scholar 

  10. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrog. Energy 31, 1999–2017 (2006)

    CAS  Google Scholar 

  11. Z.W. Fu, T.F. Jiang, Z.P. Liu, D.J. Wang, L.L. Wang, T.F. Xie, Highly photoactive Ti-doped α-Fe2O3nanorod arrays photoanode prepared by a hydrothermal method for photoelectrochemical water splitting. Electrochim. Acta 129, 358–363 (2014)

    CAS  Google Scholar 

  12. A. Liao, H.C. He, Z.W. Fan, G.Z. Xu, L. Li, J. Chen, Q.T. Han, X.Y. Chen, Y. Zhou, Z.G. Zou, Facile room-temperature surface modification of unprecedented FeB co-catalysts on Fe2O3 nanorod photoanodes for high photoelectrochemical performance. J. Catal. 352, 113–119 (2017)

    CAS  Google Scholar 

  13. D.C. Boris, B.R. Harry, C. Uros, B.J. Jacek, K. Vivekanand, D. Todd, K.S. Mahendra, Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting. Nanotechnology 23(19), 194009 (2012)

    Google Scholar 

  14. J.Y. Kim, G. Magesh, D.H. Youn, J.W. Jang, J. Kubota, K. Domen, J.S. Lee, Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3, 2681 (2013)

    Google Scholar 

  15. J. Liu, Y.Y. Cai, Z.F. Tian, G.S. Ruan, Y.X. Ye, C.H. Liang, G.S. Shao, Highly oriented Ge-doped hematite nanosheet arrays for photoelectrochemical water oxidation. Nano Energy 9, 282–290 (2014)

    CAS  Google Scholar 

  16. R.L. Spray, K.J. McDonald, K.S. Choi, Enhancing photoresponse of nanoparticulate α-Fe2O3 electrodes by surface composition tuning. J. Phys. Chem. C 115, 3497–3506 (2011)

    CAS  Google Scholar 

  17. Y.S. Hu, A. Shwarsctein, A.J. Forman, D. Hazen, J.N. Park, E.W. McFarland, Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20, 3803–3805 (2008)

    CAS  Google Scholar 

  18. P. Zhang, K.A. Shwarsctein, Y.S. Hu, J. Lefton, S. Sharma, A.J. Forman, E. McFarland, Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD. Energy Environ. Sci. 4, 1020–1028 (2011)

    CAS  Google Scholar 

  19. I.S. Cho, H.S. Han, M. Logar, J. Park, X.L. Zheng, Enhancing low-bias performance of hematite photoanodes for solar water splitting by simultaneous reduction of bulk, interface, and surface recombination pathways. Adv. Energy Mater. 6, 1501840 (2016)

    Google Scholar 

  20. A. Mao, N.G. Park, G.Y. Han, J.H. Park, Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting. Nanotechnology 22, 175703 (2011)

    Google Scholar 

  21. T.Y. Yang, H.Y. Kang, K. Jin, S. Park, J.H. Lee, U. Sim, H.Y. Jeong, Y.C. Joo, K.T. Nam, An iron oxide photoanode with hierarchical nanostructure for efficient water oxidation. J. Mater. Chem. A 2, 2297–22305 (2014)

    CAS  Google Scholar 

  22. L. Vayssieres, N. Beermann, S.E. Lindquist, A. Hagfeldt, Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to Iron (III) oxides. Chem. Mater. 13, 233–235 (2001)

    CAS  Google Scholar 

  23. P. Kumar, P. Sharma, R. Shrivastav, S. Dass, V.R. Satsangi, Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int. J. Hydrog. Energy 36, 2777–2784 (2011)

    CAS  Google Scholar 

  24. C.H. Miao, T.F. Shi, G.P. Xu, S.L. Ji, C.H. Ye, Photocurrent enhancement for Ti-doped Fe2O3 thin film photoanodes by an in situ solid-state reaction method. ACS Appl. Mater. Interfaces 5, 1310–1316 (2013)

    CAS  Google Scholar 

  25. Y. Sera, T. Horibe, K. Isobe, E. Yamashita, H. Hashimoto, Synthesis of amorphous Fe2O3/RGO composite and its application to photoinduced hydrogen evolution. J. Photochem. Photobiol. A 353, 631–638 (2018)

    CAS  Google Scholar 

  26. M. Nasiri, P. Sangpour, S. Yousefzadeh, M. Bagheri, Elevated temperature annealed α-Fe2O3/reduced graphene oxide nanocomposite photoanode for photoelectrochemical water oxidation. J. Environ. Chem. Eng. 7(2), 102999 (2019)

    CAS  Google Scholar 

  27. Y. Ding, B. Liu, J.J. Zou, H.Q. Liu, T. Xin, L.H. Xia, Y.Q. Wang, α-Fe2O3/SnO2 heterostructure composites: a high stability anode for lithium-ion battery. Mater. Res. Bull. 106, 7–13 (2018)

    CAS  Google Scholar 

  28. Z. Li, S. Ganapathy, Y. Xu, Q. Zhu, W. Chen, I. Kochetkov, C. George, L.F. Nazar, M. Wagemaker, Fe2O3 nanoparticle seed catalysts enhance cyclability on deep (dis)charge in aprotic Li–O2 batteries. Adv. Energy Mater. 8, 1703513 (2018)

    Google Scholar 

  29. P. Mills, J.L. Sullivan, A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J. Phys. D 16, 723–732 (1983)

    CAS  Google Scholar 

  30. Q. Liu, R. Mo, X.L. Li, S. Yang, J.X. Zhong, H.X. Li, Cobalt phosphate modified 3D TiO2/BiVO4 composite inverse opals photoanode for enhanced photoelectrochemical water splitting. Appl. Surf. Sci. 464, 544–551 (2019)

    CAS  Google Scholar 

  31. T. Palaniselvam, L. Shi, G. Mettela, D.H. Anjum, R. Li, K.P. Katuri, P.E. Saikaly, P. Wang, Vastly enhanced BiVO4 photocatalytic OER performance by NiCoO2 as cocatalyst. Adv. Mater. Interfaces 4, 1700540 (2017)

    Google Scholar 

  32. P.Y. Tang, H.B. Xie, C. Ros, L.J. Han, M. Biset-Peiró, Y.M. He, W. Kramer, A.P. Rodríguez, E. Saucedo, J.R. Galán-Mascarós, T. Andreu, J.R. Morantea, J. Arbiol, Enhanced photoelectrochemical water splitting of hematite multilayer nanowire photoanodes by tuning the surface state via bottom-up interfacial engineering. Energy Environ. Sci. 10, 2124–2136 (2017)

    CAS  Google Scholar 

  33. G.J. Ai, H.X. Li, S.P. Liu, R. Mo, J.X. Zhong, Solar water splitting by TiO2/CdS/Co–Pi nanowire array photoanode enhanced with Co–Pi as hole transfer relay and CdS as light absorber. Adv. Funct. Mater. 25, 5706–5713 (2015)

    CAS  Google Scholar 

  34. P.Y. Kuang, L.Y. Zhang, B. Cheng, J.G. Yu, Enhanced charge transfer kinetics of Fe2O3/CdS composite nanorod arrays using cobalt-phosphate as cocatalyst. Appl. Catal. B 218, 570–580 (2017)

    CAS  Google Scholar 

  35. W.J. Lv, Z.H. Liu, J.J. Lan, Z.Y. Liu, W.X. Mi, J.Y. Lei, L.Z. Wang, Y.D. Liu, J.L. Zhong, Visible-light-induced reduction of hexavalent chromium utilizing cobalt phosphate (Co–Pi) sensitized inverse opal TiO2 as a photocatalyst. Catal. Sci. Technol. 7, 5687–5693 (2017)

    CAS  Google Scholar 

  36. H. Han, S. Kment, F. Karlicky, L. Wang, A. Naldoni, P. Schmuki, R. Zboril, Sb-doped SnO2 nanorods underlayer effect to the α-Fe2O3 nanorods sheathed with TiO2 for enhanced photoelectrochemical water splitting. Small 14(19), 1703860 (2018)

    Google Scholar 

  37. L. Wang, N.T. Nguyen, X. Huang, P. Schmuki, Y. Bi, Hematite photoanodes: synergetic enhancement of light harvesting and charge management by sandwiched with Fe2TiO5/Fe2O3/Pt structures. Adv. Funct. Mater. 27, 1703527 (2017)

    Google Scholar 

  38. Q. Shi, S. Murcia-López, P. Tang, C. Flox, J.R. Morante, Z. Bian, H. Wang, T. Andreu, Role of tungsten doping on the surface states in BiVO4 photoanodes for water oxidation: tuning the electron trapping process. ACS Catal. 8(4), 3331–3342 (2018)

    CAS  Google Scholar 

  39. J. Zhang, R. García-Rodríguez, P. Cameron, S. Eslava, Role of cobalt-iron (oxy) hydroxide (CoFeOx) as oxygen evolution catalyst on hematite photoanodes. Energy Environ. Sci. 11, 2972–2984 (2018)

    CAS  Google Scholar 

  40. Y.J. Wang, W. Yang, G.F. Zou, J. Wu, J.L. Coffer, S.V. Sinogeikin, J.X. Zhang, Anomalous surface doping effect in semiconductor nanowires. J. Phys. Chem. C 121, 11824–11830 (2017)

    CAS  Google Scholar 

  41. J. Li, X. Jin, R. Li, Y. Zhao, X. Wang, X. Liu, H. Jiao, Copper oxide nanowires for efficient photoelectrochemical water splitting. Appl. Catal. B 240, 1–8 (2017)

    Google Scholar 

  42. K. Zhang, T. Dong, G. Xie, L. Guan, B. Guo, Q. Xiang, Y. Dai, L. Tian, A. Batool, S.U. Jan, R. Boddula, A.A. Thebo, J.R. Gong, Sacrificial interlayer for promoting charge transport in hematite photoanode. ACS Appl. Mater. Interfaces. 9, 42723–42733 (2017)

    CAS  Google Scholar 

  43. Z. Yang, S. Gao, T. Li, F.Q. Liu, Y. Ren, T. Xu, Enhanced electron extraction from template-free 3D nanoparticulate transparent conducting oxide (TCO) electrodes for dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 4, 4419–4427 (2012)

    CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (51772255), the Hunan Provincial Innovation Foundation For Postgraduate (CX2017B274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, R., Liu, Q., Li, H. et al. Photoelectrochemical water oxidation in α-Fe2O3 thin films enhanced by a controllable wet-chemical Ti-doping strategy and Co–Pi co-catalyst modification. J Mater Sci: Mater Electron 30, 21444–21453 (2019). https://doi.org/10.1007/s10854-019-02525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02525-0

Navigation