Skip to main content
Log in

One-pot remote desymmetrization/peterson-olefination for the construction of silicon-stereogenic silyl ethers

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Chiral silyl ethers and silanols are important synthetic intermediates and bioactive compounds. In this work, we developed a one-pot remote desymmetrization/Peterson-olefination of silacyclopentene oxides with benzoic acids in the presence of Martin’s sulfurane. This new methodology not only realizes the atom-economy of Peterson olefination, but also represents a catalytic method for synthesis of silicon-stereogenic silyl ethers. Using a bulky chiral phosphoric acid 4i as organocatalyst, the reactions proceeded efficiently to afford various olefin-functionalized organosilyl ethers in excellent diastereoelectivities (up to 25/1 d.r.) and high enantioselectivities (up to 94% ee).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu LW, Li L, Lai GQ, Jiang JX. Chem Soc Rev, 2011, 40: 1777–1790

    Article  CAS  PubMed  Google Scholar 

  2. Li L, Zhang Y, Gao L, Song Z. Tetrahedron Lett, 2015, 56: 1466–1473

    Article  CAS  Google Scholar 

  3. Cui YM, Lin Y, Xu LW. Coord Chem Rev, 2017, 330: 37–52

    Article  CAS  Google Scholar 

  4. Ye F, Xu Z, Xu LW. Acc Chem Res, 2021, 54: 452–470

    Article  CAS  PubMed  Google Scholar 

  5. Mutahi M, Nittoli T, Guo L, Sieburth SMN. J Am Chem Soc, 2002, 124: 7363–7375

    Article  CAS  PubMed  Google Scholar 

  6. Koga S, Ueki S, Shimada M, Ishii R, Kurihara Y, Yamanoi Y, Yuasa J, Kawai T, Uchida T, Iwamura M, Nozaki K, Nishihara H. J Org Chem, 2017, 82: 6108–6117

    Article  CAS  PubMed  Google Scholar 

  7. Corriu RJP, Moreau JJE. Tetrahedron Lett, 1973, 14: 4469–4472

    Article  Google Scholar 

  8. Hayashi T, Yamamoto K, Kumada M. Tetrahedron Lett, 1974, 15: 331–334

    Article  Google Scholar 

  9. Ohta T, Ito M, Tsuneto A, Takaya H. J Chem Soc Chem Commun, 1994, 2525–2526

  10. Tamao K, Nakamura K, Ishii H, Yamaguchi S, Shiro M. J Am Chem Soc, 1996, 118: 12469–12470

    Article  CAS  Google Scholar 

  11. Shintani R, Maciver EE, Tamakuni F, Hayashi T. J Am Chem Soc, 2012, 134: 16955–16958

    Article  CAS  PubMed  Google Scholar 

  12. Kuninobu Y, Yamauchi K, Tamura N, Seiki T, Takai K. Angew Chem Int Ed, 2013, 52: 1520–1522

    Article  CAS  Google Scholar 

  13. Shintani R, Takagi C, Ito T, Naito M, Nozaki K. Angew Chem Int Ed, 2015, 54: 1616–1620

    Article  CAS  Google Scholar 

  14. Zhang QW, An K, Liu LC, Zhang Q, Guo H, He W. Angew Chem Int Ed, 2017, 56: 1125–1129

    Article  CAS  Google Scholar 

  15. Chen H, Chen Y, Tang X, Liu S, Wang R, Hu T, Gao L, Song Z. Angew Chem Int Ed, 2019, 58: 4695–4699

    Article  CAS  Google Scholar 

  16. Jagannathan JR, Fettinger JC, Shaw JT, Franz AK. J Am Chem Soc, 2020, 142: 11674–11679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mu D, Yuan W, Chen S, Wang N, Yang B, You L, Zu B, Yu P, He C. J Am Chem Soc, 2020, 142: 13459–13468

    Article  CAS  PubMed  Google Scholar 

  18. Yang B, Yang W, Guo Y, You L, He C. Angew Chem Int Ed, 2020, 59: 22217–22222

    Article  CAS  Google Scholar 

  19. Chang X, Ma PL, Chen HC, Li CY, Wang P. Angew Chem Int Ed, 2020, 59: 8937–8940

    Article  CAS  Google Scholar 

  20. Guo Y, Liu MM, Zhu X, Zhu L, He C. Angew Chem Int Ed, 2021, 60: 13887–13891

    Article  CAS  Google Scholar 

  21. Ma W, Liu LC, An K, He T, He W. Angew Chem Int Ed, 2021, 60: 4245–4251

    Article  CAS  Google Scholar 

  22. Zhang L, An K, Wang Y, Wu YD, Zhang X, Yu ZX, He W. J Am Chem Soc, 2021, 143: 3571–3582

    Article  CAS  PubMed  Google Scholar 

  23. Zhu J, Chen S, He C. J Am Chem Soc, 2021, 143: 5301–5307

    Article  CAS  PubMed  Google Scholar 

  24. An K, Ma W, Liu LC, He T, Guan G, Zhang QW, He W. Nat Commun, 2022, 13: 847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen S, Zhu J, Ke J, Li Y, He C. Angew Chem Int Ed, 2022, 61: e202117820

    Article  CAS  Google Scholar 

  26. Yuan W, Zhu X, Xu Y, He C. Angew Chem Int Ed, 2022, 61: e202204912

    Article  CAS  Google Scholar 

  27. Gao J, Mai PL, Ge Y, Yuan W, Li Y, He C. ACS Catal, 2022, 12: 8476–8483

    Article  CAS  Google Scholar 

  28. Zhou H, Han JT, Nöthling N, Lindner MM, Jenniches J, Kühn C, Tsuji N, Zhang L, List B. J Am Chem Soc, 2022, 144: 10156–10161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou M, Liu J, Deng R, Wang Q, Wu S, Zheng P, Chi YR. ACS Catal, 2022, 12: 7781–7788

    Article  CAS  Google Scholar 

  30. Zhang XX, Gao Y, Zhang YX, Zhou J, Yu JS. Angew Chem Int Ed, 2023, 62: e202217724

  31. Gao J, He C. Chem Eur J, 2023, 29: e202203475

    Article  CAS  PubMed  Google Scholar 

  32. Ge Y, Huang X, Ke J, He C. Chem Catal, 2022, 2: 2898–2928

    Article  CAS  Google Scholar 

  33. Yuan W, He C. Synthesis, 2022, 54: 1939–1950

    Article  CAS  Google Scholar 

  34. Wu Y, Wang P. Angew Chem Int Ed, 2022, 61: e202205382

    Article  CAS  Google Scholar 

  35. Ye F, Xu LW. Synlett, 2021, 32: 1281–1288

    Article  CAS  Google Scholar 

  36. Yang W, Liu L, Guo J, Wang SG, Zhang JY, Fan LW, Tian Y, Wang LL, Luan C, Li ZL, He C, Wang X, Gu QS, Liu XY. Angew Chem Int Ed, 2022, 61: e202205743

    Article  CAS  Google Scholar 

  37. Peterson DJ. J Org Chem, 1968, 33: 780–784

    Article  CAS  Google Scholar 

  38. Xu LW, Chen XH, Shen H, Deng Y, Jiang JX, Jiang K, Lai GQ, Sheng CQ. Eur J Org Chem, 2012, 2012: 290–297

    Article  CAS  Google Scholar 

  39. Lu X, Li L, Yang W, Jiang K, Yang KF, Zheng ZJ, Xu LW. Eur J Org Chem, 2013, 2013: 5814–5819

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22271276, 21871254, 21702203) and the National Key Research and Development Program of China (2022YFC2105900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Liu or Can Li.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Li, Q., Liu, Y. et al. One-pot remote desymmetrization/peterson-olefination for the construction of silicon-stereogenic silyl ethers. Sci. China Chem. 66, 2797–2802 (2023). https://doi.org/10.1007/s11426-023-1643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1643-7

Navigation