Skip to main content
Log in

Divergent synthesis of aryl amines and dihydroquinazolinones via electrochemistry-enabled rhodium-catalyzed C–H functionalization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Electrochemistry-enabled rhodium-catalyzed C–H amination and amination cyclization of arene assisted by a weakly coordinating amide have been reported. Additionally, aryl amines and dihydroquinazolinones could be obtained selectively by controlling the electric current. Mechanistic studies suggested that the amination reaction likely involves an electrochemical oxidation-induced reductive elimination of a high valent rhodium intermediate, which led to the amination reaction even proceeding smoothly at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerard B, O’Shea MW, Donckele E, Kesavan S, Akella LB, Xu H, Jacobsen EN, Marcaurelle LA. ACS Comb Sci, 2012, 14: 621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem Soc Rev, 2014, 43: 3525–3550

    Article  CAS  PubMed  Google Scholar 

  3. Zi W, Zuo Z, Ma D. Acc Chem Res, 2015, 48: 702–711

    Article  CAS  PubMed  Google Scholar 

  4. Ruiz-Castillo P, Buchwald SL. Chem Rev, 2016, 116: 12564–12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vantourout JC, Miras HN, Isidro-Llobet A, Sproules S, Watson AJB. J Am Chem Soc, 2017, 139: 4769–4779

    Article  CAS  PubMed  Google Scholar 

  6. Matsubara T, Asako S, Ilies L, Nakamura E. J Am Chem Soc, 2014, 136: 646–649

    Article  CAS  PubMed  Google Scholar 

  7. Figg TM, Park S, Park J, Chang S, Musaev DG. Organometallics, 2014, 33: 4076–4085

    Article  CAS  Google Scholar 

  8. Zhang LB, Zhang SK, Wei D, Zhu X, Hao XQ, Su JH, Niu JL, Song MP. Org Lett, 2016, 18: 1318–1321

    Article  CAS  PubMed  Google Scholar 

  9. Du C, Li PX, Zhu X, Han JN, Niu JL, Song MP. ACS Catal, 2017, 7: 2810–2814

    Article  CAS  Google Scholar 

  10. Yan Q, Chen Z, Yu W, Yin H, Liu Z, Zhang Y. Org Lett, 2015, 17: 2482–2485

    Article  CAS  PubMed  Google Scholar 

  11. Uemura T, Imoto S, Chatani N. Chem Lett, 2006, 35: 842–843

    Article  CAS  Google Scholar 

  12. Shang M, Sun SZ, Dai HX, Yu JQ. J Am Chem Soc, 2014, 136: 3354–3357

    Article  CAS  PubMed  Google Scholar 

  13. Xiao B, Gong TJ, Xu J, Liu ZJ, Liu L. J Am Chem Soc, 2011, 133: 1466–1474

    Article  CAS  PubMed  Google Scholar 

  14. Yoo EJ, Ma S, Mei TS, Chan KSL, Yu JQ. J Am Chem Soc, 2011, 133: 7652–7655

    Article  CAS  PubMed  Google Scholar 

  15. Ng KH, Ng FN, Yu WY. Chem Commun, 2012, 48: 11680–11682

    Article  CAS  Google Scholar 

  16. Engle KM, Mei TS, Wasa M, Yu JQ. Acc Chem Res, 2012, 45: 788–802

    Article  CAS  PubMed  Google Scholar 

  17. Kim J, Kim J, Chang S. Chem Eur J, 2013, 19: 7328–7333

    Article  CAS  PubMed  Google Scholar 

  18. Thirunavukkarasu VS, Raghuvanshi K, Ackermann L. Org Lett, 2013, 15: 3286–3289

    Article  CAS  PubMed  Google Scholar 

  19. Ng FN, Zhou Z, Yu WY. Chem Eur J, 2014, 20: 4474–4480

    Article  CAS  PubMed  Google Scholar 

  20. Zhou B, Du J, Yang Y, Feng H, Li Y. Org Lett, 2014, 16: 592–595

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Lu Y, Zhang B, He J, Xu H, Kang Y, Sun W, Yu J. Angew Chem Int Ed, 2017, 56: 7449–7453

    Article  CAS  Google Scholar 

  22. Ryu J, Kwak J, Shin K, Lee D, Chang S. J Am Chem Soc, 2013, 135: 12861–12868

    Article  CAS  PubMed  Google Scholar 

  23. Kingston C, Palkowitz MD, Takahira Y, Vantourout JC, Peters BK, Kawamata Y, Baran PS. Acc Chem Res, 2020, 53: 72–83

    Article  CAS  PubMed  Google Scholar 

  24. Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem Soc Rev, 2021, 50: 7941–8002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yan M, Kawamata Y, Baran PS. Chem Rev, 2017, 117: 13230–13319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li X, Cong L, Lin H, Liu F, Han F, Lin N. Sci China Chem, 2022, 65: 2576–2587

    Article  CAS  Google Scholar 

  27. Lian F, Xu K, Zeng C. Sci China Chem, 2023, 66: 540–547

    Article  CAS  Google Scholar 

  28. Ackermann L. Acc Chem Res, 2020, 53: 84–104

    Article  CAS  PubMed  Google Scholar 

  29. Jiao KJ, Xing YK, Yang QL, Qiu H, Mei TS. Acc Chem Res, 2020, 53: 300–310

    Article  CAS  PubMed  Google Scholar 

  30. Tan X, Massignan L, Hou X, Frey J, Oliveira JCA, Hussain MN, Ackermann L. Angew Chem Int Ed, 2021, 60: 13264–13270

    Article  CAS  Google Scholar 

  31. Yang QL, Li YQ, Ma C, Fang P, Zhang XJ, Mei TS. J Am Chem Soc, 2017, 139: 3293–3298

    Article  CAS  PubMed  Google Scholar 

  32. Meyer TH, Oliveira JCA, Ghorai D, Ackermann L. Angew Chem Int Ed, 2020, 59: 10955–10960

    Article  CAS  Google Scholar 

  33. Zhang S, Struwe J, Hu L, Ackermann L. Angew Chem Int Ed, 2020, 59: 3178–3183

    Article  CAS  Google Scholar 

  34. Jin S, Kim J, Kim D, Park JW, Chang S. ACS Catal, 2021, 11: 6590–6595

    Article  CAS  Google Scholar 

  35. Gao X, Wang P, Zeng L, Tang S, Lei A. J Am Chem Soc, 2018, 140: 4195–4199

    Article  CAS  PubMed  Google Scholar 

  36. Sauermann N, Mei R, Ackermann L. Angew Chem Int Ed, 2018, 57: 5090–5094

    Article  CAS  Google Scholar 

  37. Yang QL, Wang XY, Lu JY, Zhang LP, Fang P, Mei TS. J Am Chem Soc, 2018, 140: 11487–11494

    Article  CAS  PubMed  Google Scholar 

  38. Kathiravan S, Suriyanarayanan S, Nicholls IA. Org Lett, 2019, 21: 1968–1972

    Article  CAS  PubMed  Google Scholar 

  39. Qiu Y, Kong WJ, Struwe J, Sauermann N, Rogge T, Scheremetjew A, Ackermann L. Angew Chem Int Ed, 2018, 57: 5828–5832

    Article  CAS  Google Scholar 

  40. Zhang Y, Struwe J, Ackermann L. Angew Chem Int Ed, 2020, 59: 15076–15080

    Article  CAS  Google Scholar 

  41. Kong WJ, Finger LH, Messinis AM, Kuniyil R, Oliveira JCA, Ackermann L. J Am Chem Soc, 2019, 141: 17198–17206

    Article  CAS  PubMed  Google Scholar 

  42. Xing YK, Chen XR, Yang QL, Zhang SQ, Guo HM, Hong X, Mei TS. Nat Commun, 2021, 12: 930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang YQ, Wu ZJ, Zhu L, Gu Q, Lu X, You SL, Mei TS. CCS Chem, 2021, 4: 3181–3189

    Article  Google Scholar 

  44. Shono T, Hamaguchi H, Matsumura Y. J Am Chem Soc, 1975, 97: 4264–4268

    Article  CAS  Google Scholar 

  45. Wang F, Rafiee M, Stahl SS. Angew Chem Int Ed, 2018, 57: 6686–6690

    Article  CAS  Google Scholar 

  46. Lennox AJJ, Goes SL, Webster MP, Koolman HF, Djuric SW, Stahl SS. J Am Chem Soc, 2018, 140: 11227–11231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang ZH, Gao PS, Wang X, Gao JQ, Xu XT, He Z, Ma C, Mei TS. J Am Chem Soc, 2021, 143: 15599–15605

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Li Z, Ding Q, Li X, Fan X, Zhang G. Adv Synth Catal, 2019, 361: 976–982

    Article  CAS  Google Scholar 

  49. Elks J, Ganellin CR. Dictionary of Drugs: Chemical Data, Structures and Bibliographies. Heidelberg: Springer, 2014

    Google Scholar 

  50. Lunn G. HPLC Methods for Recently Approved Pharmaceuticals. Hoboken: John Wiley & Sons, 2005

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA1500100), the National Natural Science Foundation of China (21821002, 21772222, 91956112), the Science and Technology Commission of Shanghai Municipality (S&TCSM) of Shanghai (18JC1415600, 20JC1417100), and Bayer AG (Germany). And it is also dedicated to Professor Li-Xin Dai on the occasion of his 100th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Sheng Mei.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11426_2023_1603_MOESM1_ESM.pdf

Divergent Synthesis of Aryl Amines and Dihydroquinazolinones via Electrochemistry-Enabled Rhodium-Catalyzed C-H Functionalization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, YK., Wang, ZH., Fang, P. et al. Divergent synthesis of aryl amines and dihydroquinazolinones via electrochemistry-enabled rhodium-catalyzed C–H functionalization. Sci. China Chem. 66, 2863–2870 (2023). https://doi.org/10.1007/s11426-023-1603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1603-9

Navigation