Skip to main content
Log in

Rhodium(III)-catalyzed [3+2] annulative coupling between oximes and electron-deficient alkynes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Rhodium(III)-catalyzed coupling between ketoximes and alkynes via C-H activation and annulation typically followed the [4+2] selectivity to afford isoquinolines. By designing alkynes bearing a highly electron-withdrawing group and under substrate control, we have successfully switched the selectivity of the coupling between oximes and alkynes to the alternative [3+2] annulation, leading to the efficient synthesis of indenamines. This process features good regioselectivity for both substrates, high efficiency, broad substrate scope, and excellent functional group tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bohme TM, Keim C, Kreutzmann K, Linder M, Dingermann T, Dannhardt G, Mutschler E, Lambrecht G. Structure-activity relationships of dimethindene derivatives as new M2-selective muscarinic receptor antagonists. J Med Chem, 2003, 46: 856–867

    Article  Google Scholar 

  2. Cheng YJ, Hsieh CH, He Y, Hsu CS, Li Y. Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J Am Chem Soc, 2010, 132: 17381–17383

    Article  CAS  Google Scholar 

  3. He Y, Chen HY, Hou J, Li Y. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc, 2010, 132: 1377–1382

    Article  CAS  Google Scholar 

  4. Zhao G, He Y, Li Y. 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater, 2010, 22: 4355–4358

    Article  CAS  Google Scholar 

  5. O’Brien X, Parker J, Lessard P, Sinskey A. Engineering an indene bioconversion process for the production of cis-aminoindanol: a model system for the production of chiral synthons. Appl Microbiol Biotechnol, 2002, 59: 389–399

    Article  Google Scholar 

  6. Ackermann L, Vicente R, Kapdi AR. Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. Angew Chem Int Ed, 2009, 48: 9792–9826

    Article  CAS  Google Scholar 

  7. Arockiam PB, Bruneau C, Dixneuf PH. Ruthenium(II)-catalyzed C-H bond activation and functionalization. Chem Rev, 2012, 112: 5879–5918

    Article  CAS  Google Scholar 

  8. Chen X, Engle KM, Wang DH, Yu JQ. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed, 2009, 48: 5094–5115

    Article  CAS  Google Scholar 

  9. Cho SH, Kim JY, Kwak J, Chang S. Recent advances in the transition metal-catalyzed twofold oxidative C-H bond activation strategy for C-C and C-N bond formation. Chem Soc Rev, 2011, 40: 5068–5083

    Article  CAS  Google Scholar 

  10. Engle KM, Mei TS, Wasa M, Yu JQ. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc Chem Res, 2011, 45: 788–802

    Article  Google Scholar 

  11. Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Beyond directing groups: transition-metalcatalyzed C-H activation of simple arenes. Angew Chem Int Ed, 2012, 51: 10236–10254

    Article  CAS  Google Scholar 

  12. Song G, Wang F, Li X. C-C C-O and C-N bond formation via rhodium(III)-catalyzed oxidative C-H activation. Chem Soc Rev, 2012, 41: 3651–3678

    Article  CAS  Google Scholar 

  13. Sun CL, Li BJ, Shi ZJ. Pd-catalyzed oxidative coupling with organometallic reagents via C-H activation. Chem Commun, 2010, 46: 677–685

    Article  CAS  Google Scholar 

  14. Wencel-Delord J, Droge T, Liu F, Glorius F. Towards mild metal-catalyzed C-H bond activation. Chem Soc Rev, 2011, 40: 4740–4761

    Article  CAS  Google Scholar 

  15. Wencel-Delord J, Glorius F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat Chem, 2013, 5: 369–375

    Article  CAS  Google Scholar 

  16. Kuninobu Y, Kawata A, Takai K. Rhenium-catalyzed formation of indene frameworks via C-H bond activation: [3+2] annulation of aromatic aldimines and acetylenes. J Am Chem Soc, 2005, 127: 13498–13499

    Article  CAS  Google Scholar 

  17. Kuninobu Y, Tokunaga Y, Kawata A, Takai K. Insertion of polar and nonpolar unsaturated molecules into carbonrhenium bonds generated by C-H bond activation: synthesis of phthalimidine and indene derivatives. J Am Chem Soc, 2006, 128: 202–209

    Article  CAS  Google Scholar 

  18. Sun ZM, Chen SP, Zhao P. Tertiary carbinamine synthesis by rhodium-catalyzed [3+2] annulation of N-unsubstituted aromatic ketimines and alkynes. Chem-Eur J, 2010, 16: 2619–2627

    Article  CAS  Google Scholar 

  19. Tran DN, Cramer N. Enantioselective Rhodium(I)-catalyzed [3+2] annulations of aromatic ketimines induced by directed C-H activations. Angew Chem Int Ed, 2011, 50: 11098–11102

    Article  CAS  Google Scholar 

  20. Zhao P, Wang F, Han K, Li X. Ruthenium- and sulfonamide-catalyzed cyclization between N-sulfonyl imines and alkynes. Org Lett, 2012, 14: 5506–5509

    Article  CAS  Google Scholar 

  21. Tran DN, Cramer N. Rhodium-catalyzed dynamic kinetic asymmetric transformations of racemic allenes by the [3+2] annulation of aryl ketimines. Angew Chem Int Ed, 2013, 52: 10630–10634

    Article  CAS  Google Scholar 

  22. Zhang J, Ugrinov A, Zhao P. Ruthenium(II)/ N-heterocyclic carbene catalyzed [3+2] carbocyclization with aromatic N-H ketimines and internal alkynes. Angew Chem Int Ed, 2013, 52: 6681–6684

    Article  CAS  Google Scholar 

  23. Liu W, Zell D, John M, Ackermann L. Manganese-catalyzed synthesis of cis-b-amino acid esters through organometallic C-H activation of ketimines. Angew Chem Int Ed, 2015, doi: 10.1002/anie.201411808

    Google Scholar 

  24. Shi XY, Li CJ. Synthesis of indene frameworks via rhodium-catalyzed cascade cyclization of aromatic ketone and unsaturated carbonyl compounds. Org Lett, 2013, 15: 1476–1479

    Article  CAS  Google Scholar 

  25. Seoane A, Casanova N, Quiñones N, Mascareñas JL, Gulías M. Rhodium(III)-catalyzed dearomatizing (3+2) annulation of 2-alkenylphenols and alkynes. J Am Chem Soc, 2014, 136: 7607–7610

    Article  CAS  Google Scholar 

  26. Zhou MB, Pi R, Hu M, Yang Y, Song RJ, Xia Y, Li JH. Rhodium(III)-catalyzed [3+2] annulation of 5-aryl-2,3-dihydro-1H-pyrroles with internal alkynes through C(sp2)-H/alkene functionalization. Angew Chem Int Ed, 2014, 53: 11338–11341

    Article  CAS  Google Scholar 

  27. Huang JR, Song Q, Zhu YQ, Qin L, Qian ZY, Dong L. Rhodium(III)-catalyzed three-component reaction of imines alkynes, and aldehydes through C-H activation. Chem-Eur J, 2014, 20: 16882–16886

    Article  CAS  Google Scholar 

  28. Dong L, Qu CH, Huang JR, Zhang W, Zhang QR, Deng JG. Rhodium-catalyzed spirocyclic sultam synthesis by [3+2] annulation with cyclic N-sulfonyl ketimines and alkynes. Chem-Eur J, 2013, 19: 16537–16540

    Article  CAS  Google Scholar 

  29. Patureau FW, Besset T, Kuhl N, Glorius F. Diverse strategies toward indenol and fulvene derivatives: Rh-catalyzed C-H activation of aryl ketones followed by coupling with internal alkynes. J Am Chem Soc, 2011, 133: 2154–2156

    Article  CAS  Google Scholar 

  30. Muralirajan K, Parthasarathy K, Cheng CH. Regioselective synthesis of indenols by rhodium-catalyzed C-H activation and carbocyclization of aryl ketones and alkynes. Angew Chem Int Ed, 2011, 50: 4169–4172

    Article  CAS  Google Scholar 

  31. Li BJ, Wang HY, Zhu QL, Shi ZJ. Rhodium/copper-catalyzed annulation of benzimides with internal alkynes: indenone synthesis through sequential C-H and C-N cleavage. Angew Chem Int Ed, 2012, 51: 3948–3952

    Article  CAS  Google Scholar 

  32. Chen Y, Wang F, Zhen W, Li X. Rhodium(III)-catalyzed annulation of azomethine ylides with alkynes via C-H activation. Adv Synth Catal, 2013, 355: 353–359

    CAS  Google Scholar 

  33. Fukutani T, Umeda N, Hirano K, Satoh T, Miura M. Rhodiumcatalyzed oxidative coupling of aromatic imines with internal alkynes via regioselective C-H bond cleavage. Chem Commun, 2009: 5141–5143

    Google Scholar 

  34. Chinnagolla RK, Jeganmohan M. Ruthenium-catalyzed regioselective cyclization of aromatic ketones with alkynes: an efficient route to indenols and benzofulvenes. Eur J Org Chem, 2012, 2012: 417–423

    Article  CAS  Google Scholar 

  35. Nagamoto M, Nishimura T. Catalytic [3+2] annulation of ketimines with alkynes via C-H activation by a cationic iridium(cod) complex. Chem Commun, 2014, 50: 6274–6277

    Article  CAS  Google Scholar 

  36. Zhang XS, Chen K, Shi ZJ. Transition metal-catalyzed direct nucleophilic addition of C-H bonds to carbon-heteroatom double bonds. Chem Sci, 2014, 5: 2146–2159

    Article  CAS  Google Scholar 

  37. Li L, Brennessel WW, Jones WD. An efficient low-temperature route to polycyclic isoquinoline salt synthesis via C-H activation with [Cp*MCl2]2 (M=Rh Ir). J Am Chem Soc, 2008, 130: 12414–12419

    Article  CAS  Google Scholar 

  38. Zhang X, Chen D, Zhao M, Zhao J, Jia A, Li X. Synthesis of isoquinolines via rhodium(III)-catalyzed dehydrative C-C and C-N coupling between oximines and alkynes. Adv Synth Catal, 2011, 353: 719–723

    Article  CAS  Google Scholar 

  39. Jayakumar J, Parthasarathy K, Chen YH, Lee TH, Chuang SC, Cheng CH. One-pot synthesis of highly substituted polyheteroaromatic compounds by rhodium(III)-catalyzed multiple C-H activation and annulation. Angew Chem Int Ed, 2014, 53: 9889–9892

    Article  CAS  Google Scholar 

  40. Parthasarathy K, Cheng CH. Easy access to isoquinolines and tetrahydroquinolines from ketoximes and alkynes via rhodium-catalyzed C-H bond activation. J Org Chem, 2009, 74: 9359–9364

    Article  CAS  Google Scholar 

  41. Chinnagolla RK, Pimparkar S, Jeganmohan M. Ruthenium-catalyzed highly regioselective cyclization of ketoximes with alkynes by C-H bond activation: a practical route to synthesize substituted isoquinolines. Org Lett, 2012, 14: 3032–3035

    Article  CAS  Google Scholar 

  42. Too PC, Wang YF, Chiba S. Rhodium(III)-catalyzed synthesis of isoquino-lines from aryl ketone O-acyloxime derivatives and internal alkynes. Org Lett, 2010, 12: 5688–5691

    Article  CAS  Google Scholar 

  43. Kornhaaß C, Li J, Ackermann L. Cationic ruthenium catalysts for alkyne annulations with oximes by C-H/N-O functionalizations. J Org Chem, 2012, 77: 9190–9198

    Article  Google Scholar 

  44. Li X, Yu S, Wang F, Wan B, Yu X. Rhodium(III)-catalyzed C-C coupling between arenes and aziridines by C-H activation. Angew Chem Int Ed, 2013, 52: 2577–2580

    Article  CAS  Google Scholar 

  45. Wang F, Song G, Li X. Rh(III)-catalyzed tandem oxidative olefination-michael reactions between aryl carboxamides and alkenes. Org Lett, 2010, 12: 5430–5433

    Article  CAS  Google Scholar 

  46. Xie F, Qi Z, Li X. Rhodium(III)-catalyzed azidation and nitration of arenes by C-H activation. Angew Chem Int Ed, 2013, 52: 11862–11866

    Article  CAS  Google Scholar 

  47. Hyster TK, Rovis T. Pyridine synthesis from oximes and alkynesviarhodium(III) catalysis: Cp* and Cpt provide complementary selectivity. Chem Commun, 2011, 47: 11846–11848

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Yu, S., Qi, Z. et al. Rhodium(III)-catalyzed [3+2] annulative coupling between oximes and electron-deficient alkynes. Sci. China Chem. 58, 1297–1301 (2015). https://doi.org/10.1007/s11426-015-5408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5408-8

Keywords

Navigation