Skip to main content

Advertisement

Log in

Microporous metal-organic framework materials for efficient capture and separation of greenhouse gases

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The release of anthropogenic greenhouse gases into the atmosphere poses serious risks to the environment and human health, and is a global threat of growing concern. In order to ameliorate the greenhouse gas emission problems, the efficient capture and separation of these greenhouse gases are greatly meaningful. Metal-organic framework (MOF) materials, a relatively new kind of organic-inorganic hybrid porous materials with unique framework features, tunable pore environment and high surface areas, have been widely studied as regards their applicability to this implementation. And the well-defined structures of MOF materials greatly promote the understanding of structure-property relationships. In this review, we intend to provide a profound account of significant progress in the field of capture and separation of greenhouse gases using MOFs as adsorbents, including carbon dioxide, methane, nitrous oxide and fluorocompounds (such as perfluorocarbons, sulfur hexafluoride, hydrochlorocarbons, and hydrofluocarbons). The strategies used to realize the efficient capture and separation of greenhouse gases have been summarized, and the relationships between the frameworks, their capture and separation performances and mechanisms are discussed. Furthermore, the existing challenges and perspectives with regard to the development of MOF materials for the capture and separation of greenhouse gases and industrial practical application are outlined to further promote this very significant and active emerging topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Q, Luo J, Zhong Z, Borgna A. Energy Environ Sci, 2011, 4: 42–55

    Article  CAS  Google Scholar 

  2. Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW. Chem Rev, 2016, 116: 11840–11876

    Article  PubMed  Google Scholar 

  3. Ding M, Flaig RW, Jiang HL, Yaghi OM. Chem Soc Rev, 2019, 48: 2783–2828

    Article  CAS  PubMed  Google Scholar 

  4. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR. Chem Rev, 2012, 112: 724–781

    Article  CAS  PubMed  Google Scholar 

  5. Wang Q, Yu Y, Li Y, Min X, Zhang J, Sun T. Sep Purif Technol, 2022, 283: 120206

    Article  CAS  Google Scholar 

  6. Hamilton SM, Hopkins WS, Harding DJ, Walsh TR, Gruene P, Haertelt M, Fielicke A, Meijer G, Mackenzie SR. J Am Chem Soc, 2010, 132: 1448–1449

    Article  CAS  PubMed  Google Scholar 

  7. Lai NA. Appl Thermal Eng, 2014, 70: 1–6

    Article  CAS  Google Scholar 

  8. Dan PD, Murthy SS. Int J Energy Res, 1989, 13: 1–21

    Article  Google Scholar 

  9. Wang DC, Li YH, Li D, Xia YZ, Zhang JP. Renew Sustain Energy Rev, 2010, 14: 344–353

    Article  CAS  Google Scholar 

  10. Li JR, Kuppler RJ, Zhou HC. Chem Soc Rev, 2009, 38: 1477–1504

    Article  CAS  PubMed  Google Scholar 

  11. Yang SQ, Hu TL. Coord Chem Rev, 2022, 468: 214628

    Article  CAS  Google Scholar 

  12. Cui WG, Hu TL, Bu XH. Adv Mater, 2020, 32: 1806445

    Article  CAS  Google Scholar 

  13. Fu D, Davis ME. Chem Soc Rev, 2022, 51: 9340–9370

    Article  CAS  PubMed  Google Scholar 

  14. Kitagawa S, Kitaura R, Noro S. Angew Chem Int Ed, 2004, 43: 2334–2375

    Article  CAS  Google Scholar 

  15. Waller PJ, Gàndara F, Yaghi OM. Acc Chem Res, 2015, 48: 3053–3063

    Article  CAS  PubMed  Google Scholar 

  16. Lin RB, Chen B. Chem, 2022, 8: 2114–2135

    Article  CAS  Google Scholar 

  17. Furukawa H, Yaghi OM. J Am Chem Soc, 2009, 131: 8875–8883

    Article  CAS  PubMed  Google Scholar 

  18. Liu S, Chen Y, Yue B, Wang C, Qin B, Chai Y, Wu G, Li J, Han X, da-Silva I, Manuel P, Day SJ, Thompson SP, Guan N, Yang S, Li L. Chem Eur J, 2022, 28: e202201659

    CAS  PubMed  Google Scholar 

  19. Ding X, Liu Z, Zhang Y, Ye G, Jia J, Chen J. Angew Chem Int Ed, 2022, 61: e202116483

    CAS  Google Scholar 

  20. Bai R, Song X, Yan W, Yu J. Natl Sci Rev, 2022, 9: nwac064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. Science, 2013, 341: 1230444

    Article  PubMed  Google Scholar 

  22. Lin RB, Xiang S, Zhou W, Chen B. Chem, 2020, 6: 337–363

    Article  CAS  Google Scholar 

  23. Zhao D, Wang X, Yue L, He Y, Chen B. Chem Commun, 2022, 58: 11059–11078

    Article  CAS  Google Scholar 

  24. Wen HM, Li B, Li L, Lin RB, Zhou W, Qian G, Chen B. Adv Mater, 2018, 30: 1704792

    Article  Google Scholar 

  25. Suh MP, Park HJ, Prasad TK, Lim DW. Chem Rev, 2012, 112: 782–835

    Article  CAS  PubMed  Google Scholar 

  26. Wang H, Liu Y, Li J. Adv Mater, 2020, 32: 2002603

    Article  CAS  Google Scholar 

  27. Cui WG, Zhang GY, Hu TL, Bu XH. Coord Chem Rev, 2019, 387: 79–120

    Article  CAS  Google Scholar 

  28. Lv XL, Wang K, Wang B, Su J, Zou X, Xie Y, Li JR, Zhou HC. J Am Chem Soc, 2017, 139: 211–217

    Article  CAS  PubMed  Google Scholar 

  29. Diercks CS, Liu Y, Cordova KE, Yaghi OM. Nat Mater, 2018, 17: 301–307

    Article  CAS  PubMed  Google Scholar 

  30. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M. Chem Soc Rev, 2007, 36: 993–1017

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Lustig WP, Li J. Chem Soc Rev, 2018, 47: 4729–4756

    Article  CAS  PubMed  Google Scholar 

  32. Meng X, Wang HN, Song SY, Zhang HJ. Chem Soc Rev, 2017, 46: 464–480

    Article  CAS  PubMed  Google Scholar 

  33. Lim DW, Kitagawa H. Chem Soc Rev, 2021, 50: 6349–6368

    Article  CAS  PubMed  Google Scholar 

  34. Lim DW, Kitagawa H. Chem Rev, 2020, 120: 8416–8467

    Article  CAS  PubMed  Google Scholar 

  35. Woellner M, Hausdorf S, Klein N, Mueller P, Smith MW, Kaskel S. Adv Mater, 2018, 30: 1704679

    Article  Google Scholar 

  36. Duan C, Yu Y, Xiao J, Li Y, Yang P, Hu F, Xi H. Green Energy Environ, 2021, 6: 33–49

    Article  CAS  Google Scholar 

  37. Bernin D, Hedin N. Curr Opin Colloid Interface Sci, 2018, 33: 53–62

    Article  CAS  Google Scholar 

  38. Chapman KW, Chupas PJ, Kepert CJ. J Am Chem Soc, 2005, 127: 11232–11233

    Article  CAS  PubMed  Google Scholar 

  39. Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Chem Rev, 2021, 121: 1286–1424

    Article  CAS  PubMed  Google Scholar 

  40. Nagy à. Phys Rep, 1998, 298: 1–79

    Article  CAS  Google Scholar 

  41. Young DC. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. New York: Wiley, 2001. 273–276

    Google Scholar 

  42. Pham T, Space B. Top Curr Chem (Z), 2020, 378: 14

    Article  CAS  Google Scholar 

  43. Zhang Z, Yao ZZ, Xiang S, Chen B. Energy Environ Sci, 2014, 7: 2868–2899

    Article  CAS  Google Scholar 

  44. Siegelman RL, Kim EJ, Long JR. Nat Mater, 2021, 20: 1060–1072

    Article  CAS  PubMed  Google Scholar 

  45. Mikkelsen M, Jørgensen M, Krebs FC. Energy Environ Sci, 2010, 3: 43–81

    Article  CAS  Google Scholar 

  46. Haszeldine RS. Science, 2009, 325: 1647–1652

    Article  CAS  PubMed  Google Scholar 

  47. Rochelle GT. Science, 2009, 325: 1652–1654

    Article  CAS  PubMed  Google Scholar 

  48. Wriedt M, Sculley JP, Yakovenko AA, Ma Y, Halder GJ, Balbuena PB, Zhou HC. Angew Chem Int Ed, 2012, 51: 9804–9808

    Article  CAS  Google Scholar 

  49. Wu H, Reali RS, Smith DA, Trachtenberg MC, Li J. Chem Eur J, 2010, 16: 13951–13954

    Article  CAS  PubMed  Google Scholar 

  50. Nijem N, Thissen P, Yao Y, Longo RC, Roodenko K, Wu H, Zhao Y, Cho K, Li J, Langreth DC, Chabal YJ. J Am Chem Soc, 2011, 133: 12849–12857

    Article  CAS  PubMed  Google Scholar 

  51. Peng J, Liu Z, Wu Y, Xian S, Li Z. ACS Appl Mater Interfaces, 2022, 14: 21089–21097

    Article  CAS  PubMed  Google Scholar 

  52. Li H, Davis CE, Groy TL, Kelley DG, Yaghi OM. J Am Chem Soc, 1998, 120: 2186–2187

    Article  CAS  Google Scholar 

  53. Chen B, Eddaoudi M, Reineke TM, Kampf JW, O’Keeffe M, Yaghi OM. J Am Chem Soc, 2000, 122: 11559–11560

    Article  CAS  Google Scholar 

  54. Millward AR, Yaghi OM. J Am Chem Soc, 2005, 127: 17998–17999

    Article  CAS  PubMed  Google Scholar 

  55. Sumida K, Horike S, Kaye SS, Herm ZR, Queen WL, Brown CM, Grandjean F, Long GJ, Dailly A, Long JR. Chem Sci, 2010, 1: 184–191

    Article  CAS  Google Scholar 

  56. Liang L, Liu C, Jiang F, Chen Q, Zhang L, Xue H, Jiang HL, Qian J, Yuan D, Hong M. Nat Commun, 2017, 8: 1233

    Article  PubMed  PubMed Central  Google Scholar 

  57. McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR. J Am Chem Soc, 2012, 134: 7056–7065

    Article  CAS  PubMed  Google Scholar 

  58. Loiseau T, Lecroq L, Volkringer C, Marrot J, Férey G, Haouas M, Taulelle F, Bourrelly S, Llewellyn PL, Latroche M. J Am Chem Soc, 2006, 128: 10223–10230

    Article  CAS  PubMed  Google Scholar 

  59. Queen WL, Hudson MR, Bloch ED, Mason JA, Gonzalez MI, Lee JS, Gygi D, Howe JD, Lee K, Darwish TA, James M, Peterson VK, Teat SJ, Smit B, Neaton JB, Long JR, Brown CM. Chem Sci, 2014, 5: 4569–4581

    Article  CAS  Google Scholar 

  60. Tan C, Yang S, Champness NR, Lin X, Blake AJ, Lewis W, Schröder M. Chem Commun, 2011, 47: 4487–4489

    Article  CAS  Google Scholar 

  61. Hou L, Shi WJ, Wang YY, Guo Y, Jin C, Shi QZ. Chem Commun, 2011, 47: 5464–5466

    Article  CAS  Google Scholar 

  62. Zhang Z, Xiang S, Rao X, Zheng Q, Fronczek FR, Qian G, Chen B. Chem Commun, 2010, 46: 7205–7207

    Article  CAS  Google Scholar 

  63. Tan YX, He YP, Zhang J. Chem Commun, 2011, 47: 10647–10649

    Article  CAS  Google Scholar 

  64. Li YW, Li JR, Wang LF, Zhou BY, Chen Q, Bu XH. J Mater Chem A, 2013, 1: 495–499

    Article  CAS  Google Scholar 

  65. Caskey SR, Wong-Foy AG, Matzger AJ. J Am Chem Soc, 2008, 130: 10870–10871

    Article  CAS  PubMed  Google Scholar 

  66. Dietzel PDC, Johnsen RE, Fjellvåg H, Bordiga S, Groppo E, Chavan S, Blom R. Chem Commun, 2008, 41: 5125–5127

    Article  Google Scholar 

  67. Queen WL, Brown CM, Britt DK, Zajdel P, Hudson MR, Yaghi OM. J Phys Chem C, 2011, 115: 24915–24919

    Article  CAS  Google Scholar 

  68. Wu H, Simmons JM, Srinivas G, Zhou W, Yildirim T. J Phys Chem Lett, 2010, 1: 1946–1951

    Article  CAS  Google Scholar 

  69. Si X, Jiao C, Li F, Zhang J, Wang S, Liu S, Li Z, Sun L, Xu F, Gabelica Z, Schick C. Energy Environ Sci, 2011, 4: 4522–4527

    Article  CAS  Google Scholar 

  70. Couck S, Denayer JFM, Baron GV, Rémy T, Gascon J, Kapteijn F. J Am Chem Soc, 2009, 131: 6326–6327

    Article  CAS  PubMed  Google Scholar 

  71. Kim SN, Kim J, Kim HY, Cho HY, Ahn WS. Catal Today, 2013, 204: 85–93

    Article  CAS  Google Scholar 

  72. Yang Q, Wiersum AD, Llewellyn PL, Guillerm V, Serre C, Maurin G. Chem Commun, 2011, 47: 9603–9605

    Article  CAS  Google Scholar 

  73. Shi Z, Tao Y, Wu J, Zhang C, He H, Long L, Lee Y, Li T, Zhang YB. J Am Chem Soc, 2020, 142: 2750–2754

    Article  CAS  PubMed  Google Scholar 

  74. Qazvini OT, Telfer SG. J Mater Chem A, 2020, 8: 12028–12034

    Article  CAS  Google Scholar 

  75. An J, Geib SJ, Rosi NL. J Am Chem Soc, 2010, 132: 38–39

    Article  CAS  PubMed  Google Scholar 

  76. Li B, Zhang Z, Li Y, Yao K, Zhu Y, Deng Z, Yang F, Zhou X, Li G, Wu H, Nijem N, Chabal YJ, Lai Z, Han Y, Shi Z, Feng S, Li J. Angew Chem Int Ed, 2012, 51: 1412–1415

    Article  CAS  Google Scholar 

  77. Vaidhyanathan R, Iremonger SS, Shimizu GKH, Boyd PG, Alavi S, Woo TK. Science, 2010, 330: 650–653

    Article  CAS  PubMed  Google Scholar 

  78. Lin JB, Zhang JP, Chen XM. J Am Chem Soc, 2010, 132: 6654–6656

    Article  CAS  PubMed  Google Scholar 

  79. Vaidhyanathan R, Iremonger SS, Shimizu GKH, Boyd PG, Alavi S, Woo TK. Angew Chem Int Ed, 2012, 51: 1826–1829

    Article  CAS  Google Scholar 

  80. Liao PQ, Zhou DD, Zhu AX, Jiang L, Lin RB, Zhang JP, Chen XM. J Am Chem Soc, 2012, 134: 17380–17383

    Article  CAS  PubMed  Google Scholar 

  81. Lin Q, Wu T, Zheng ST, Bu X, Feng P. J Am Chem Soc, 2012, 134: 784–787

    Article  CAS  PubMed  Google Scholar 

  82. Lin RB, Chen D, Lin YY, Zhang JP, Chen XM. Inorg Chem, 2012, 51: 9950–9955

    Article  CAS  PubMed  Google Scholar 

  83. Panda T, Pachfule P, Chen Y, Jiang J, Banerjee R. Chem Commun, 2011, 47: 2011–2013

    Article  CAS  Google Scholar 

  84. Li JR, Tao Y, Yu Q, Bu XH, Sakamoto H, Kitagawa S. Chem Eur J, 2008, 14: 2771–2776

    Article  CAS  PubMed  Google Scholar 

  85. Song C, Hu J, Ling Y, Feng YL, Krishna R, Chen D, He Y. J Mater Chem A, 2015, 3: 19417–19426

    Article  CAS  Google Scholar 

  86. Wang ZS, Li M, Peng YL, Zhang Z, Chen W, Huang XC. Angew Chem Int Ed, 2019, 58: 16071–16076

    Article  CAS  Google Scholar 

  87. Xuan ZH, Zhang DS, Chang Z, Hu TL, Bu XH. Inorg Chem, 2014, 53: 8985–8990

    Article  CAS  PubMed  Google Scholar 

  88. Ren GJ, Liu YQ, Hu TL, Bu XH. CrystEngComm, 2015, 17: 8198–8201

    Article  CAS  Google Scholar 

  89. Lin JB, Nguyen TTT, Vaidhyanathan R, Burner J, Taylor JM, Durekova H, Akhtar F, Mah RK, Ghaffari-Nik O, Marx S, Fylstra N, Iremonger SS, Dawson KW, Sarkar P, Hovington P, Rajendran A, Woo TK, Shimizu GKH. Science, 2021, 374: 1464–1469

    Article  CAS  PubMed  Google Scholar 

  90. Zhao Y, Wu H, Emge TJ, Gong Q, Nijem N, Chabal YJ, Kong L, Langreth DC, Liu H, Zeng H, Li J. Chem Eur J, 2011, 17: 5101–5109

    Article  CAS  PubMed  Google Scholar 

  91. Biswas S, Zhang J, Li Z, Liu YY, Grzywa M, Sun L, Volkmer D, Van Der Voort P. Dalton Trans, 2013, 42: 4730–4737

    Article  CAS  PubMed  Google Scholar 

  92. Zhang M, Wang Q, Lu Z, Liu H, Liu W, Bai J. CrystEngComm, 2014, 16: 6287–6290

    Article  CAS  Google Scholar 

  93. Ebadi Amooghin A, Sanaeepur H, Luque R, Garcia H, Chen B. Chem Soc Rev, 2022, 51: 7427–7508

    Article  CAS  PubMed  Google Scholar 

  94. Cui H, Ye Y, Liu T, Alothman ZA, Alduhaish O, Lin RB, Chen B. Inorg Chem, 2020, 59: 17143–17148

    Article  CAS  PubMed  Google Scholar 

  95. Liao PQ, Chen H, Zhou DD, Liu SY, He CT, Rui Z, Ji H, Zhang JP, Chen XM. Energy Environ Sci, 2015, 8: 1011–1016

    Article  CAS  Google Scholar 

  96. Yang Q, Vaesen S, Ragon F, Wiersum AD, Wu D, Lago A, Devic T, Martineau C, Taulelle F, Llewellyn PL, Jobic H, Zhong C, Serre C, De Weireld G, Maurin G. Angew Chem Int Ed, 2013, 52: 10316–10320

    Article  CAS  Google Scholar 

  97. Zhang DS, Chang Z, Li YF, Jiang ZY, Xuan ZH, Zhang YH, Li JR, Chen Q, Hu TL, Bu XH. Sci Rep, 2013, 3: 3312

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cui H, Ye Y, Arman H, Li Z, Alsalme A, Lin RB, Chen B. Cryst Growth Des, 2019, 19: 5829–5835

    Article  CAS  Google Scholar 

  99. Kim EJ, Siegelman RL, Jiang HZH, Forse AC, Lee JH, Martell JD, Milner PJ, Falkowski JM, Neaton JB, Reimer JA, Weston SC, Long JR. Science, 2020, 369: 392–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Siegelman RL, Milner PJ, Forse AC, Lee JH, Colwell KA, Neaton JB, Reimer JA, Weston SC, Long JR. J Am Chem Soc, 2019, 141: 13171–13186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dinakar B, Forse AC, Jiang HZH, Zhu Z, Lee JH, Kim EJ, Parker ST, Pollak CJ, Siegelman RL, Milner PJ, Reimer JA, Long JR. J Am Chem Soc, 2021, 143: 15258–15270

    Article  CAS  PubMed  Google Scholar 

  102. McDonald TM, Mason JA, Kong X, Bloch ED, Gygi D, Dani A, Crocellè V, Giordanino F, Odoh SO, Drisdell WS, Vlaisavljevich B, Dzubak AL, Poloni R, Schnell SK, Planas N, Lee K, Pascal T, Wan LF, Prendergast D, Neaton JB, Smit B, Kortright JB, Gagliardi L, Bordiga S, Reimer JA, Long JR. Nature, 2015, 519: 303–308

    Article  CAS  PubMed  Google Scholar 

  103. Jun HJ, Yoo DK, Jhung SH. J CO2 Utilization, 2022, 58: 101932

    Article  CAS  Google Scholar 

  104. Bien CE, Chen KK, Chien SC, Reiner BR, Lin LC, Wade CR, Ho WSW. J Am Chem Soc, 2018, 140: 12662–12666

    Article  CAS  PubMed  Google Scholar 

  105. Wright AM, Wu Z, Zhang G, Mancuso JL, Comito RJ, Day RW, Hendon CH, Miller JT, Dincă M. Chem, 2018, 4: 2894–2901

    Article  CAS  Google Scholar 

  106. Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ. Nature, 2013, 495: 80–84

    Article  CAS  PubMed  Google Scholar 

  107. Shekhah O, Belmabkhout Y, Chen Z, Guillerm V, Cairns A, Adil K, Eddaoudi M. Nat Commun, 2014, 5: 4228

    Article  CAS  PubMed  Google Scholar 

  108. Bhatt PM, Belmabkhout Y, Cadiau A, Adil K, Shekhah O, Shkurenko A, Barbour LJ, Eddaoudi M. J Am Chem Soc, 2016, 138: 9301–9307

    Article  CAS  PubMed  Google Scholar 

  109. Wen HM, Liao C, Li L, Alsalme A, Alothman Z, Krishna R, Wu H, Zhou W, Hu J, Chen B. J Mater Chem A, 2019, 7: 3128–3134

    Article  CAS  Google Scholar 

  110. Liang W, Bhatt PM, Shkurenko A, Adil K, Mouchaham G, Aggarwal H, Mallick A, Jamal A, Belmabkhout Y, Eddaoudi M. Chem, 2019, 5: 950–963

    Article  CAS  Google Scholar 

  111. Chen KJ, Madden DG, Pham T, Forrest KA, Kumar A, Yang QY, Xue W, Space B, Perry Iv JJ, Zhang JP, Chen XM, Zaworotko MJ. Angew Chem Int Ed, 2016, 55: 10268–10272

    Article  CAS  Google Scholar 

  112. Nandi S, De Luna P, Daff TD, Rother J, Liu M, Buchanan W, Hawari AI, Woo TK, Vaidhyanathan R. Sci Adv, 2015, 1: e1500421

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nandi S, Collins S, Chakraborty D, Banerjee D, Thallapally PK, Woo TK, Vaidhyanathan R. J Am Chem Soc, 2017, 139: 1734–1737

    Article  CAS  PubMed  Google Scholar 

  114. Zhao X, Bu X, Zhai QG, Tran H, Feng P. J Am Chem Soc, 2015, 137: 1396–1399

    Article  CAS  PubMed  Google Scholar 

  115. Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B. Nat Commun, 2012, 3: 954

    Article  PubMed  Google Scholar 

  116. Li JR, Yu J, Lu W, Sun LB, Sculley J, Balbuena PB, Zhou HC. Nat Commun, 2013, 4: 1538

    Article  PubMed  Google Scholar 

  117. Yu MH, Zhang P, Feng R, Yao ZQ, Yu YC, Hu TL, Bu XH. ACS Appl Mater Interfaces, 2017, 9: 26177–26183

    Article  CAS  PubMed  Google Scholar 

  118. Boyd PG, Chidambaram A, García-Díez E, Ireland CP, Daff TD, Bounds R, Gladysiak A, Schouwink P, Moosavi SM, Maroto-Valer MM, Reimer JA, Navarro JAR, Woo TK, Garcia S, Stylianou KC, Smit B. Nature, 2019, 576: 253–256

    Article  CAS  PubMed  Google Scholar 

  119. Farmahini AH, Krishnamurthy S, Friedrich D, Brandani S, Sarkisov L. Chem Rev, 2021, 121: 10666–10741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dunstan MT, Jain A, Liu W, Ong SP, Liu T, Lee J, Persson KA, Scott SA, Dennis JS, Grey CP. Energy Environ Sci, 2016, 9: 1346–1360

    Article  CAS  Google Scholar 

  121. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin Iii FS. Nature, 2006, 443: 71–75

    Article  CAS  PubMed  Google Scholar 

  122. He Y, Zhou W, Qian G, Chen B. Chem Soc Rev, 2014, 43: 5657–5678

    Article  CAS  PubMed  Google Scholar 

  123. Limbri H, Gunawan C, Rosche B, Scott J. Water Air Soil Pollut, 2013, 224: 1566

    Article  Google Scholar 

  124. Mason JA, Oktawiec J, Taylor MK, Hudson MR, Rodriguez J, Bachman JE, Gonzalez MI, Cervellino A, Guagliardi A, Brown CM, Llewellyn PL, Masciocchi N, Long JR. Nature, 2015, 527: 357–361

    Article  CAS  PubMed  Google Scholar 

  125. Taylor MK, Runcevski T, Oktawiec J, Gonzalez MI, Siegelman RL, Mason JA, Ye J, Brown CM, Long JR. J Am Chem Soc, 2016, 138: 15019–15026

    Article  CAS  PubMed  Google Scholar 

  126. Yang QY, Lama P, Sen S, Lusi M, Chen KJ, Gao WY, Shivanna M, Pham T, Hosono N, Kusaka S, Perry Iv JJ, Ma S, Space B, Barbour LJ, Kitagawa S, Zaworotko MJ. Angew Chem Int Ed, 2018, 57: 5684–5689

    Article  CAS  Google Scholar 

  127. Li S, Zeng S, Tian Y, Jing X, Sun F, Zhu G. Nano Res, 2021, 14: 3288–3293

    Article  CAS  Google Scholar 

  128. Li L, Yang J, Li J, Chen Y, Li J. Micropor Mesopor Mat, 2014, 198: 236–246

    Article  CAS  Google Scholar 

  129. Li J, Yang J, Li L, Li J. J Energy Chem, 2014, 23: 453–460

    Article  Google Scholar 

  130. Niu Z, Cui X, Pham T, Lan PC, Xing H, Forrest KA, Wojtas L, Space B, Ma S. Angew Chem Int Ed, 2019, 58: 10138–10141

    Article  CAS  Google Scholar 

  131. Wang SM, Shivanna M, Yang QY. Angew Chem Int Ed, 2022, 61: e202201017

    CAS  Google Scholar 

  132. Chang M, Zhao Y, Liu D, Yang J, Li J, Zhong C. Sustain Energy Fuels, 2020, 4: 138–142

    Article  CAS  Google Scholar 

  133. Lv D, Wu Y, Chen J, Tu Y, Yuan Y, Wu H, Chen Y, Liu B, Xi H, Li Z, Xia Q. AIChE J, 2020, 66: e16287

    Article  CAS  Google Scholar 

  134. Chang M, Yan T, Wei Y, Wang JX, Liu D, Chen JF. ACS Appl Mater Interfaces, 2022, 14: 25374–25384

    Article  CAS  PubMed  Google Scholar 

  135. Chang M, Wang F, Wei Y, Yang Q, Wang JX, Liu D, Chen JF. AIChE J, 2022, 68: e17794

    CAS  Google Scholar 

  136. Guo P, Chen Y, Chang M, Li Y, Yang Q, Liu D. J Chem Eng Data, 2022, 67: 1654–1662

    Article  CAS  Google Scholar 

  137. Kim TH, Kim SY, Yoon TU, Kim MB, Park W, Han HH, Kong C, Park CY, Kim JH, Bae YS. Chem Eng J, 2020, 399: 125717

    Article  CAS  Google Scholar 

  138. Chang M, Ren J, Yang Q, Liu D. Chem Eng J, 2021, 408: 127294

    Article  CAS  Google Scholar 

  139. Qadir S, Gu Y, Ali S, Li D, Zhao S, Wang S, Xu H, Wang S. Chem Eng J, 2022, 428: 131136

    Article  CAS  Google Scholar 

  140. Ren X, Sun T, Hu J, Wang S. Micropor Mesopor Mat, 2014, 186: 137–145

    Article  CAS  Google Scholar 

  141. Guo Y, Hu J, Liu X, Sun T, Zhao S, Wang S. Chem Eng J, 2017, 327: 564–572

    Article  CAS  Google Scholar 

  142. Chen Y, Wu H, Yuan Y, Lv D, Qiao Z, An D, Wu X, Liang H, Li Z, Xia Q. Chem Eng J, 2020, 385: 123836

    Article  CAS  Google Scholar 

  143. Ma S, Sun D, Wang XS, Zhou HC. Angew Chem Int Ed, 2007, 46: 2458–2462

    Article  CAS  Google Scholar 

  144. Lee K, Isley Iii WC, Dzubak AL, Verma P, Stoneburner SJ, Lin LC, Howe JD, Bloch ED, Reed DA, Hudson MR, Brown CM, Long JR, Neaton JB, Smit B, Cramer CJ, Truhlar DG, Gagliardi L. J Am Chem Soc, 2014, 136: 698–704

    Article  CAS  PubMed  Google Scholar 

  145. Jaramillo DE, Reed DA, Jiang HZH, Oktawiec J, Mara MW, Forse AC, Lussier DJ, Murphy RA, Cunningham M, Colombo V, Shuh DK, Reimer JA, Long JR. Nat Mater, 2020, 19: 517–521

    Article  CAS  PubMed  Google Scholar 

  146. Yoon JW, Chang H, Lee SJ, Hwang YK, Hong DY, Lee SK, Lee JS, Jang S, Yoon TU, Kwac K, Jung Y, Pillai RS, Faucher F, Vimont A, Daturi M, Férey G, Serre C, Maurin G, Bae YS, Chang JS. Nat Mater, 2017, 16: 526–531

    Article  CAS  PubMed  Google Scholar 

  147. Zhang F, Li K, Chen J, Zhang X, Li K, Shang H, Ma L, Guo W, Wu X, Yang J, Li J. Sep Purif Technol, 2022, 281: 119951

    Article  CAS  Google Scholar 

  148. Lashof DA, Ahuja DR. Nature, 1990, 344: 529–531

    Article  CAS  Google Scholar 

  149. Wuebbles DJ. Science, 2009, 326: 56–57

    Article  CAS  PubMed  Google Scholar 

  150. Rodhe H. Science, 1990, 248: 1217–1219

    Article  CAS  PubMed  Google Scholar 

  151. Yan L, Zhang X, Ren T, Zhang H, Wang X, Suo J. Chem Commun, 2002, 1: 860–861

    Article  Google Scholar 

  152. Ravishankara AR, Daniel JS, Portmann RW. Science, 2009, 326: 123–125

    Article  CAS  PubMed  Google Scholar 

  153. Pérez-Ramirez J, Kapteijn F, Schöffel K, Moulijn JA. Appl Catal B-Environ, 2003, 44: 117–151

    Article  Google Scholar 

  154. Konsolakis M. ACS Catal, 2015, 5: 6397–6421

    Article  CAS  Google Scholar 

  155. Severin K. Chem Soc Rev, 2015, 44: 6375–6386

    Article  CAS  PubMed  Google Scholar 

  156. Zeng R, Feller M, Diskin-Posner Y, Shimon LJW, Ben-David Y, Milstein D. J Am Chem Soc, 2018, 140: 7061–7064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tsai ML, Hadt RG, Vanelderen P, Sels BF, Schoonheydt RA, Solomon EI. J Am Chem Soc, 2014, 136: 3522–3529

    Article  CAS  PubMed  Google Scholar 

  158. Zhang F, Chen X, Zhuang J, Xiao Q, Zhong Y, Zhu W. Catal Sci Technol, 2011, 1: 1250–1255

    Article  CAS  Google Scholar 

  159. Chen DL, Wang N, Wang FF, Xie J, Zhong Y, Zhu W, Johnson JK, Krishna R. J Phys Chem C, 2014, 118: 17831–17837

    Article  CAS  Google Scholar 

  160. Wang L, Li Y, Wang Y, Yang J, Li L, Li J. Sep Purif Technol, 2020, 251: 117311

    Article  CAS  Google Scholar 

  161. Yang J, Du B, Liu J, Krishna R, Zhang F, Zhou W, Wang Y, Li J, Chen B. Chem Commun, 2018, 54: 14061–14064

    Article  CAS  Google Scholar 

  162. Wang L, Zhang F, Yang J, Li L, Li J. Chem Commun, 2021, 57: 6636–6639

    Article  CAS  Google Scholar 

  163. Zhang X, Chen W, Shi W, Cheng P. J Mater Chem A, 2016, 4: 16198–16204

    Article  CAS  Google Scholar 

  164. Wang L, Zhang F, Wang C, Li Y, Yang J, Li L, Li J. Sep Purif Technol, 2020, 235: 116219

    Article  CAS  Google Scholar 

  165. Ma L, Zhang F, Li K, Zhang Y, Song Z, Wang L, Yang J, Li J. J Solid State Chem, 2022, 309: 122951

    Article  CAS  Google Scholar 

  166. Laube JC, Newland MJ, Hogan C, Brenninkmeijer CAM, Fraser PJ, Martinerie P, Oram DE, Reeves CE, Rückmann T, Schwander J, Witrant E, Sturges WT. Nat Geosci, 2014, 7: 266–269

    Article  CAS  Google Scholar 

  167. Kim MB, Lee SJ, Lee CY, Bae YS. Micropor Mesopor Mat, 2014, 190: 356–361

    Article  CAS  Google Scholar 

  168. Chowdhury P, Bikkina C, Meister D, Dreisbach F, Gumma S. Micropor Mesopor Mat, 2009, 117: 406–413

    Article  CAS  Google Scholar 

  169. Senkovska I, Barea E, Navarro JAR, Kaskel S. Micropor Mesopor Mat, 2012, 156: 115–120

    Article  CAS  Google Scholar 

  170. Chuah CY, Goh K, Bae TH. J Phys Chem C, 2017, 121: 6748–6755

    Article  CAS  Google Scholar 

  171. Wang SM, Mu XT, Liu HR, Zheng ST, Yang QY. Angew Chem Int Ed, 2022, 61: e202207066

    CAS  Google Scholar 

  172. Wang T, Chang M, Yan T, Ying Y, Yang Q, Liu D. Ind Eng Chem Res, 2021, 60: 5976–5983

    Article  CAS  Google Scholar 

  173. Yang M, Chang M, Yan T, Liu D. Sep Purif Technol, 2022, 295: 121340

    Article  CAS  Google Scholar 

  174. Kim MB, Yoon TU, Hong DY, Kim SY, Lee SJ, Kim SI, Lee SK, Chang JS, Bae YS. Chem Eng J, 2015, 276: 315–321

    Article  CAS  Google Scholar 

  175. Kim MB, Kim KM, Kim TH, Yoon TU, Kim EJ, Kim JH, Bae YS. Chem Eng J, 2018, 339: 223–229

    Article  CAS  Google Scholar 

  176. Åhlén M, Kapaca E, Hedbom D, Willhammar T, Strømme M, Cheung O. Micropor Mesopor Mat, 2022, 329: 111548

    Article  Google Scholar 

  177. Rogelj J, McCollum DL, O’Neill BC, Riahi K. Nat Clim Change, 2013, 3: 405–412

    Article  CAS  Google Scholar 

  178. Wang SM, Lan HL, Guan GW, Yang QY. ACS Appl Mater Interfaces, 2022, 14: 40072–40081

    Article  CAS  PubMed  Google Scholar 

  179. Motkuri RK, Annapureddy HVR, Vijaykumar M, Schaef HT, Martin PF, McGrail BP, Dang LX, Krishna R, Thallapally PK. Nat Commun, 2014, 5: 4368

    Article  CAS  PubMed  Google Scholar 

  180. Zheng J, Vemuri RS, Estevez L, Koech PK, Varga T, Camaioni DM, Blake TA, McGrail BP, Motkuri RK. J Am Chem Soc, 2017, 139: 10601–10604

    Article  CAS  PubMed  Google Scholar 

  181. Zheng J, Barpaga D, Trump BA, Shetty M, Fan Y, Bhattacharya P, Jenks JJ, Su CY, Brown CM, Maurin G, McGrail BP, Motkuri RK. J Am Chem Soc, 2020, 142: 3002–3012

    Article  CAS  PubMed  Google Scholar 

  182. Zheng J, Barpaga D, Gutiérrez OY, Browning ND, Mehdi BL, Farha OK, Lercher JA, McGrail BP, Motkuri RK. ACS Appl Energy Mater, 2018, 1: 5853–5858

    Article  CAS  Google Scholar 

  183. Chen CX, Zheng SP, Wei ZW, Cao CC, Wang HP, Wang D, Jiang JJ, Fenske D, Su CY. Chem Eur J, 2017, 23: 4060–4064

    Article  CAS  PubMed  Google Scholar 

  184. Lin RB, Li TY, Zhou HL, He CT, Zhang JP, Chen XM. Chem Sci, 2015, 6: 2516–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Xiong YY, Krishna R, Pham T, Forrest KA, Chen CX, Wei ZW, Jiang JJ, Wang HP, Fan Y, Pan M, Su CY. Chem Mater, 2022, 34: 5116–5124

    Article  CAS  Google Scholar 

  186. Chen CX, Wei Z, Jiang JJ, Fan YZ, Zheng SP, Cao CC, Li YH, Fenske D, Su CY. Angew Chem Int Ed, 2016, 55: 9932–9936

    Article  CAS  Google Scholar 

  187. Chen CX, Qiu QF, Cao CC, Pan M, Wang HP, Jiang JJ, Wei ZW, Zhu K, Li G, Su CY. Chem Commun, 2017, 53: 11403–11406

    Article  CAS  Google Scholar 

  188. Wang W, Xiong XH, Zhu NX, Zeng Z, Wei ZW, Pan M, Fenske D, Jiang JJ, Su CY. Angew Chem Int Ed, 2022, 61: e202201766

    CAS  Google Scholar 

  189. Rubio-Martinez M, Avci-Camur C, Thornton AW, Imaz I, Maspoch D, Hill MR. Chem Soc Rev, 2017, 46: 3453–3480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22275102) and the Natural Science Foundation of Tianjin (20JCYBJC01330).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong-Liang Hu or Banglin Chen.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SQ., Hu, TL. & Chen, B. Microporous metal-organic framework materials for efficient capture and separation of greenhouse gases. Sci. China Chem. 66, 2181–2203 (2023). https://doi.org/10.1007/s11426-022-1497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1497-6

Navigation