Skip to main content
Log in

Multicomponent polymerization of sulfur, chloroform and diamine toward polythiourea

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The efficient utilization of elemental sulfur (S8) for developing high value-added chemicals is a global concern considering its abundant sources and yearly accelerating environmental issues. However, it has been a long-standing challenge to directly transform elemental sulfur to sulfur-containing polymer, especially via an environmentally benign manner. Herein, a unique chemo-differentiating multicomponent polymerization (MCP) of elemental sulfur, chloroform, and diamine is reported to construct polythiourea based on amine-involved two sequential reactions including isothiocyanation and nucleophilic addition. This strategy features isocynide-free monomers as starting materials, mild conditions, high molecular weights (up to 72,900 g/mol) and desired yields (up to 83%). With the advantages of inactive isocyanation and active nucleophilic addition, the stoichiometric balance of amine and isothiocyanate could be delicately controlled to afford various polythioureas with high molecular weights. The polythioureas have been further utilized in the Cu-based aqueous catalysis and Hg-based ion adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung WJ, Griebel JJ, Kim ET, Yoon H, Simmonds AG, Ji HJ, Dirlam PT, Glass RS, Wie JJ, Nguyen NA, Guralnick BW, Park J, Somogyi Á, Theato P, Mackay ME, Sung YE, Char K, Pyun J. Nat Chem, 2013, 5: 518–524

    Article  CAS  PubMed  Google Scholar 

  2. Griebel JJ, Glass RS, Char K, Pyun J. Prog Polym Sci, 2016, 58: 90–125

    Article  CAS  Google Scholar 

  3. Nguyen TB, Retailleau P. J Org Chem, 2019, 84: 5907–5912

    Article  CAS  PubMed  Google Scholar 

  4. Choudhary TV, Malandra J, Green J, Parrott S, Johnson B. Angew Chem Int Ed, 2006, 45: 3299–3303

    Article  CAS  Google Scholar 

  5. Worthington MJH, Kucera RL, Chalker JM. Green Chem, 2017, 19: 2748–2761

    Article  CAS  Google Scholar 

  6. Devendar P, Yang GF. Top Curr Chem (Z), 2017, 375: 82

    Article  Google Scholar 

  7. Kruželák J, Sýkora R, Hudec I. Chem Papers, 2016, 70: 1533–1555

    Article  Google Scholar 

  8. Boyd DA. Angew Chem Int Ed, 2016, 55: 15486–15502

    Article  CAS  Google Scholar 

  9. Ota ST, Richmond GL. J Am Chem Soc, 2011, 133: 7497–7508

    Article  CAS  PubMed  Google Scholar 

  10. Nguyen TB, Tran MQ, Ermolenko L, Al-Mourabit A. Org Lett, 2014, 16: 310–313

    Article  CAS  PubMed  Google Scholar 

  11. Priebbenow DL, Bolm C. Chem Soc Rev, 2013, 42: 7870–7880

    Article  CAS  PubMed  Google Scholar 

  12. Nguyen TB. Adv Synth Catal, 2017, 359: 1066–1130

    Article  CAS  Google Scholar 

  13. Chao J, Yue T, Ren B, Gu G, Lu X, Ren W. Angew Chem Int Ed, 2022, 61: e202115950

    CAS  Google Scholar 

  14. Lee JM, Noh GY, Kim BG, Yoo Y, Choi WJ, Kim DG, Yoon HG, Kim YS. ACS Macro Lett, 2019, 8: 912–916

    Article  CAS  PubMed  Google Scholar 

  15. Tian T, Hu R, Tang BZ. J Am Chem Soc, 2018, 140: 6156–6163

    Article  CAS  PubMed  Google Scholar 

  16. Kanbara T, Kawai Y, Hasegawa K, Morita H, Yamamoto T. J Polym Sci Polym Chem, 2001, 39: 3739–3750

    Article  CAS  Google Scholar 

  17. Kawai Y, Kanbara T, Hasegawa K. J Polym Sci Polym Chem, 1999, 37: 1737–1740

    Article  CAS  Google Scholar 

  18. Li W, Wu X, Zhao Z, Qin A, Hu R, Tang BZ. Macromolecules, 2015, 48: 7747–7754

    Article  CAS  Google Scholar 

  19. Sun Z, Huang H, Li L, Liu L, Chen Y. Macromolecules, 2017, 50: 8505–8511

    Article  CAS  Google Scholar 

  20. Cao W, Dai F, Hu R, Tang BZ. J Am Chem Soc, 2020, 142: 978–986

    Article  CAS  PubMed  Google Scholar 

  21. Yasin A, Chen Y, Liu Y, Zhang L, Zan X, Zhang Y. Polym Chem, 2020, 11: 810–819

    Article  CAS  Google Scholar 

  22. Tuten BT, Barner-Kowollik C. Macromol Rapid Commun, 2021, 42: 2000495

    Article  CAS  Google Scholar 

  23. Lee T, Dirlam PT, Njardarson JT, Glass RS, Pyun J. J Am Chem Soc, 2022, 144: 5–22

    Article  CAS  PubMed  Google Scholar 

  24. Mutlu H, Ceper EB, Li X, Yang J, Dong W, Ozmen MM, Theato P. Macromol Rapid Commun, 2019, 40: 1800650

    Article  Google Scholar 

  25. Wu X, Smith JA, Petcher S, Zhang B, Parker DJ, Griffin JM, Hasell T. Nat Commun, 2019, 10: 647

    Article  PubMed  PubMed Central  Google Scholar 

  26. He L, Zhao H, Theato P. Angew Chem Int Ed, 2018, 57: 13012–13014

    Article  CAS  Google Scholar 

  27. Mutlu H, Döpping DA, Huber B, Theato P. Macromol Rapid Commun, 2021, 42: 2000695

    Article  CAS  Google Scholar 

  28. Zhang J, Zang Q, Yang F, Zhang H, Sun JZ, Tang BZ. J Am Chem Soc, 2021, 143: 3944–3950

    Article  CAS  PubMed  Google Scholar 

  29. Liu S, Li F, Cao W, Hu R, Tang BZ. Chin J Chem, 2022, 40: 725–733

    Article  CAS  Google Scholar 

  30. Zhang L, Hu Y, Hu R, Tang BZ. Chem Commun, 2022, 58: 1994–1997

    Article  CAS  Google Scholar 

  31. Wu S, Luo M, Darensbourg DJ, Zuo X. Macromolecules, 2019, 52: 8596–8603

    Article  CAS  Google Scholar 

  32. Luo X, Xie Y, Huang N, Wang L. Chin J Org Chem, 2022, 42: 838–846

    Article  Google Scholar 

  33. Sharma S, Maurya RA, Min KI, Jeong GY, Kim DP. Angew Chem Int Ed, 2013, 52: 7564–7568

    Article  CAS  Google Scholar 

  34. Zakrzewski J, Krawczyk M. Phosphorus Sulfur Silicon Relat Elem, 2009, 184: 1880–1903

    Article  CAS  Google Scholar 

  35. Tan W, Wei J, Jiang X. Org Lett, 2017, 19: 2166–2169

    Article  CAS  PubMed  Google Scholar 

  36. Xue H, Zhao Y, Wu H, Wang Z, Yang B, Wei Y, Wang Z, Tao L. J Am Chem Soc, 2016, 138: 8690–8693

    Article  CAS  PubMed  Google Scholar 

  37. Lee IH, Kim H, Choi TL. J Am Chem Soc, 2013, 135: 3760–3763

    Article  CAS  PubMed  Google Scholar 

  38. Deng XX, Li L, Li ZL, Lv A, Du FS, Li ZC. ACS Macro Lett, 2012, 1: 1300–1303

    Article  CAS  PubMed  Google Scholar 

  39. Yoon K, Dong G. Angew Chem Int Ed, 2018, 57: 8592–8596

    Article  CAS  Google Scholar 

  40. Sehlinger A, Kreye O, Meier MAR. Macromolecules, 2013, 46: 6031–6037

    Article  CAS  Google Scholar 

  41. Zhang Z, You YZ, Wu DC, Hong CY. Macromolecules, 2015, 48: 3414–3421

    Article  CAS  Google Scholar 

  42. Kim H, Bang KT, Choi I, Lee JK, Choi TL. J Am Chem Soc, 2016, 138: 8612–8622

    Article  CAS  PubMed  Google Scholar 

  43. Tuten BT, De Keer L, Wiedbrauk S, Van Steenberge PHM, D’hooge DR, Barner-Kowollik C. Angew Chem Int Ed, 2019, 58: 5672–5676

    Article  CAS  Google Scholar 

  44. Ihara E, Hara Y, Itoh T, Inoue K. Macromolecules, 2011, 44: 5955–5960

    Article  CAS  Google Scholar 

  45. Anelli PL, Brocchetta M, Copez D, Palano D, Visigalli M, Paoli P. Tetrahedron, 1997, 53: 15827–15832

    Article  CAS  Google Scholar 

  46. Xie SY, Peng Y, Chen M, Huang RB, Chow YL, Zheng LS. J Org Chem, 2005, 70: 1400–1407

    Article  CAS  PubMed  Google Scholar 

  47. Fedoryński M. Chem Rev, 2003, 103: 1099–1132

    Article  PubMed  Google Scholar 

  48. Li M, Duan X, Jiang Y, Sun X, Xu X, He J, Zheng Y, Song W, Zheng N. CCS Chem, 2022, 4: 3402–3415

    Article  CAS  Google Scholar 

  49. Tian E, Li M, Song W, Zheng N. Sci China Chem, 2022, 65: 1798–1806

    Article  CAS  Google Scholar 

  50. Li M, Duan X, Jiang Y, Sun X, Xu X, Zheng Y, Song W, Zheng N. Macromolecules, 2022, 55: 7240–7248

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21978039), the Natural Science Foundation of Jiangsu Province (BK20221265, BK20211100) and the Fundamental Research Funds for the Central Universities (DUT21YG133, DUT22YG224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nan Zheng or Wangze Song.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, N., Gao, H., Jiang, Z. et al. Multicomponent polymerization of sulfur, chloroform and diamine toward polythiourea. Sci. China Chem. 66, 870–877 (2023). https://doi.org/10.1007/s11426-022-1483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1483-8

Keywords

Navigation